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PHASE TRANSITIONS VIA COMPLEX EXTENSIONS OF MARKOV CHAINS

JINGCHENG LIU, CHUNYANG WANG, YITONG YIN, YIXIAO YU

Abstract. We study algebraic properties of partition functions, particularly the locationof zeros, through

the lens of rapidly mixing Markov chains. �e classical Lee-Yang program initiated the study of phase

transitions via locating complex zeros of partition functions. Markov chains, besides serving as algo-

rithms, have also been used to model physical processes tending to equilibrium. In many scenarios, rapid

mixing of Markov chains coincides with the absence of phase transitions (complex zeros). Prior works

have shown that the absence of phase transitions implies rapid mixing of Markov chains. We reveal a

converse connection by li�ing probabilistic tools for the analysis of Markov chains to study complex

zeros of partition functions.

Our motivating example is the independence polynomial on :-uniform hypergraphs, where the best-

known zero-free regime has been significantly lagging behind the regime where we have rapidly mixing

Markov chains for the underlying hypergraph independent sets. Specifically, the Glauber dynamics is

known to mix rapidly on independent sets in a :-uniform hypergraph of maximum degree Δ provided

that Δ . 2
:/2. On the other hand, the best-known zero-freeness around the point 1 of the independence

polynomial on :-uniform hypergraphs requires Δ ≤ 5, the same bound as on a graph.

By introducing a complex extension of Markov chains, we li� an existing percolation argument to

the complex plane, and show that if Δ . 2
:/2, the Markov chain converges in a complex neighborhood,

and the independence polynomial itself does not vanish in the same neighborhood. In the same regime,

our result also implies central limit theorems for the size of a uniformly random independent set, and

deterministic approximation algorithms for the number of hypergraph independent sets of size : ≤ U=
for some constant U.
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1. Introduction

More than a few important recent advances in theoretical computer science, in combinatorics and
probability theory, have been made possible through locating the zeros of suitably chosen multivari-
ate polynomials. �ese include improved approximation algorithms for the traveling salesman prob-
lem [GSS11, KKG21], construction of Ramanujan graphs of every degree [MSS15a, MSS15b], deter-
ministic approximate counting algorithms for spin systems [Bar16, PR17, LSS17, LSS19], an algebraic
proof of a generalization of the van derWaerden Conjecture [Gur06], a resolution of the long-standing
Kadison-Singer conjecture [MSS18], and notably the theory of negatively dependent random vari-
ables [BBL09]. Furthermore, there has been a fruitful line of work that exploits a more general form
of geometry, notably the development of log-concave polynomials and Lorentzian polynomials, which
have led to novel analyses of Markov chains and the resolution of Mason’s conjecture [ALGV18, BH20].

�e development of multivariate stability theory dates back to the famous Lee-Yang program [LY52]
in statistical physics. In their seminal work, Lee and Yang initiated the study of phase transitions
through the location of complex zeros of the partition function while also establishing identities relat-
ing key physical quantities to the density function of zeros. A key insight is that to understand the
macroscopic properties of a system at the thermodynamic limit (that is, as the size of the system tends
to infinity), one studies the complex zeros in a neighborhood for any finite systems so as to determine
whether the quantities of interest remain analytic or can have a discontinuity. One key quantity of par-
ticular interest is the so-called free-energy density. �ere have also been various generalizations and ex-
tensions of Lee-Yang type theorem in statistical physics and combinatorics [LS81, HL72, Wag09], Cher-
noff bounds [KS18], asymptotic normality [Kah00] and central limit theorems [LPRS16, MS19, JPSS22].
Stability theory for a univariate polynomial is also extensively studied in control theory and can be
traced back to the famous Routh-Hurwitz criterion [Rou77, Hur95].

Roughly speaking, a phase transition occurs when the macroscopic property of a system is not fully
determined by local interactions in the thermodynamic limit (that is, there could be multiple phases).
To formalize such a notion, three types of mathematical definitions have been studied:

(1) Probabilistic: Conditions under which a Gibbs distribution exhibits decay of long-range corre-
lations with respect to distance.

(2) Algebraic: Conditions under which a partition function vanishes in the thermodynamic limit.
�is is also Lee-Yang’s view of phase transition.

(3) Algorithmic: Conditions under which a spin system out-of-equilibrium quickly returns to ther-
mal equilibrium; in particular, when does a Glauber dynamics mix rapidly to the Gibbs distri-
bution.

Notably, Glauber dynamics can be seen as both a model of physical processes tending to equilibrium,
and also an algorithm that can be efficiently simulated. To this date, each of these distinct-looking
definitions has seen fruitful algorithmic applications, giving rise to algorithms based on the decay
of correlations [Wei06], the absence of zeros [Bar16], and the direct simulation of Glauber dynamics.
Numerous efforts have been made to understand the relationship between these three definitions and
their relative strengths. For amenable graphs such as la�ices, Dobrushin and Shlosman [DS85, DS87]
studied the first two types in the form of complete analyticity and showed that they are equivalent.
Stroock and Zegarlinski [SZ92] showed the equivalence of all three types via log-Sobolev inequalities.
�ese analyses crucially rely on the amenability of the la�ices.

In more general se�ings, Barvinok [Bar19] posed an open question concerning establishing the ab-
sence of zeros from the analysis of any rapidly mixing Markov chain. A key challenge, as pointed out
by Barvinok, is that while an inverse polynomial spectral gap is sufficient to prove the rapid mixing
of Markov chains, a constant radius of zero-free region is o�en desired for practical applications. Un-
til now, li�le progress has been made in this specific direction. In contrast, the other direction has
seen more success. Assuming decay of correlation in the form of contraction, the absence of zeros
follows from the contraction method [PR19, LSS19, SS19]. Furthermore, [ALO20, CLV20] showed that
contraction also implies rapid mixing of Glauber dynamics. Additionally, the absence of zeros has
been shown to imply the decay of correlations (in the form of strong spatial mixing) for self-reducible
problems [Gam23, Reg23] and to imply rapid mixing of Glauber dynamics [AASV21, CLV21] through a
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different form of correlation decay known as bounded total influence. Moreover, rapid mixing is known
to imply spectral independence [AJK+24], which can be seen as a form of bounded correlations.

We give a rough summary of the state-of-the-art in Figure 1.

zero-freeness

rapid mixing decay of correlations

[Gam23, Reg23]

[PR19, LSS19, SS19]

[ALO20, CLV20]

[AJK+24]

[AASV21, CLV21]
�is work

Figure 1. A rough summary of connections between three types of phase transitions.
We do not distinguish the exact form of phase transitions within each type.

1.1. Hypergraph independence polynomial. Our motivating example is the independence polyno-
mial on a :-uniform hypergraph. Given a hypergraph � = (+, E), we say that � is :-uniform if every
hyperedge 4 ∈ E has size |4 | = : . �e maximum degree Δ is the maximum number of hyperedges
incident to a vertex. An independent set in � is a subset ( ⊂ + of vertices that does not contain any
4 ∈ � , that is, every hyperedge 4 must have at least one endpoint not chosen by (. We use f ∈ {0, 1}=
to indicate the set (, meaning that f (E) = 1 iff E ∈ (. Let I(�) denote the set of independent sets in
�. �en, the independence polynomial of � is a generating polynomial in the variables ,:

/� (,) =
∑

f∈I(� )

∏
E:f (E)=1

_E .

When : = 2, this is the standard independence polynomial, which has been studied in many branches
of mathematics, physics, and computer science. To name a few, Shearer [She85] obtained instance-
optimal sufficient criterion in Lovász local lemma using the largest root of the independence polyno-
mial; a tight runtime analysis of the celebrated Moser-Tardos algorithm for the algorithmic Lovász
local lemma is characterized by the independence polynomial [KS11]; independence polynomial is
also known as the hardcore model for equilibrium of la�ice-gas in statistical physics [SS03]; it is also
the first example where a sharp computational complexity of approximate counting and sampling is
known [Wei06, Sly10]. We will refer to the complex zeros of the independence polynomial in , as
Lee-Yang zeros, as ,’s are playing the role of external fields here. Henceforth, we denote the above

polynomial by /
ly

�
(,).

Sco� and Sokal also proposed a so�-core version of independence polynomial [SS03], with which
they derived a weak dependency version of the local lemma. �is inspired us to study a so�-core
independence polynomial parameterized by the interactions:

/ fs
� (#) =

∑
(⊂+

∏
4:4⊂(

V4.

Intuitively, for every hyperedge 4 completely contained in a set (, we assign a “penalty” V4 for violating
the “hard-core” constraint. Zeros in the interaction parameter are also known as Fisher zeros [Fis65].
Compared to Lee-Yang zeros that have been extensively studied, general results for Fisher zeros have
been limited until the recent introduction of contraction method [PR19, LSS19, SS19]. However, these
contraction methods crucially rely on a self-avoiding walk construction, which breaks up the unifor-
mity of hypergraphs and is therefore ill-suited for our purpose.

�e point , = 1 in /
ly

�
(,) and the point # = 0 in / fs

�
(#) are of particular interests, as they correspond

to the uniform enumeration of independent sets. �is is a prominent example of models where the
known regime of zero-freeness, corresponding to an algebraic phase transition, has significantly lagged
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behind the known regime where efficient algorithms are available. As one of the early examples where
approximate counting and sampling algorithms were devised for a constraint satisfaction problem
under a local lemma type condition, [HSZ19] showed that the Glauber dynamics on independent sets
of :-uniform hypergraph mixes rapidly provided the maximum degree Δ . 2:/2, and this is matched,
up to the leading constants, by an earlier NP-hardness result for Δ & 2:/2 in [BGG+19]. Since then,
several developments have followed suit, including perfect samplers [HSW21, QWZ22] and a local
sampler [FGW+23], all within similar regimes, albeit with poly(:) factors. Remarkably, the la�er can
be derandomized to yield a deterministic approximate counting algorithm.

For zero-freeness results, however, progress has lagged significantly despite numerous efforts. While
there is a rich literature on models with pairwise interactions, understanding of the more physically
relevant regime involving higher-order interactions remains limited, and techniques for locating com-
plex zeros for higher-order interactions are less developed. Only recently, Galvin, McKinley, Perkins,
Sarantis and Tetali [GMP+24] established the existence of a zero-free disk for _ centered at the origin
with radius ≈ 1

eΔ
for hypergraphs of maximum degree Δ. Later, Bencs and Buys [BB23] improved this

result to match Shearer’s bound for the independence polynomial on graphs. For zero-freeness in a
complex neighborhood around the positive real axis, it implicitly follows from the li�ing paradigm
of [LSS19, SS19] applied to the contraction method of [LL15, LYZ16], that zero-freeness holds around
, = 1 for Δ ≤ 5. �is is also carried out more explicitly by [LX21, BB23]. Despite these advances, a sig-
nificant gap remains compared to the algorithmic transition, which holds up to Δ . 2:/2. Essentially,
existing techniques for proving zero-freeness are insufficient to exploit the uniformity of hyperedges.

1.2. Our contributions. Wedemonstrate howone can establish the absence of complex zeros through
a powerful probabilistic tool in the analysis of Markov chains: percolation applied to a complex exten-

sion of Markov chains. We show zero-free regions for both the Lee-Yang zeros of /
ly

�
(,), and the Fisher

zeros of / fs
�
(#), in regimes that match the algorithmic transition of Δ . 2:/2 up to poly(:) factors. We

also show convergence of a systematic scan Glauber dynamics with complex transition weights in the
same regime. To the best of our knowledge, this is the first such result for a complex dynamics.

�eorem 1.1 (Lee-Yang zeros of hypergraph independence polynomial). Fix : ≥ 2 and Δ ≥ 3. Let

0 < Y < 1
9:5Δ2 , and let [0, _2,Y) be the real segment such that the following holds for all _ ∈ [0, _2,Y):

(
_ + Y

1 + _ − Y

) :/2
<

1

2
√
2eΔ:2

.

LetDY be the union of Y-balls around the segment given byDY =
{
I ∈ C | ∃_ ∈ [0, _2,Y) s.t. |I − _ | ≤ Y

}
.

�en, for any :-uniform hypergraph � = (+, E)withmaximum degree Δ, the partition function /
ly

�
(,)

is non-zero for all , ∈ D+
Y , i.e. ∀, ∈ D+

Y , /
ly

�
(,) ≠ 0.

As a corollary, there is no phase transition in _ ∈ [0, 1] up till the “algorithmic transition” at Δ .
2:/2:

Corollary 1.2. Let X > 0, : ≥ 2 and Δ ≥ 3 be constants with Δ ≤ 1−X
2
√
2e:2
· 2 :

2 . For any :-uniform

hypergraph � = (+, E) with maximum degree Δ, /
ly

�
(_) ≠ 0 around an open strip containing [0, 1].

�is is a significant improvement on [GMP+24] for :-uniform hypergraphs.
We also prove a Fisher zero-free region.

�eorem 1.3 (Fisher zeros of hypergraph independence polynomial). Fix : ≥ 2 and Δ ≥ 3. Let

0 < Y < 1
16(:+1)5Δ2 andDY = {I ∈ C | ∃V ∈ [0, 1] s.t. |I − V | ≤ Y} be the union of Y-balls around [0, 1].

If the following condition holds:

√
1 + 2Y2−:/2 < 1

2
√
2eΔ(: + 1)2

,

then for any :-uniform hypergraph � = (+, E) with maximum degree Δ, the partition function / fs
�
(#)

is non-zero for all # ∈ DEY , i.e. ∀# ∈ DEY , / fs
�
(#) ≠ 0.
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Remark 1.4 (implications for deterministic counting). FPTASes for the partition functions /
ly

�
(,)

and / fs
�
(#) can be derived from the above zero-freeness results by applying Barvionk’s interpolation

method [Bar16, PR17, LSS17]. �e cumulants, such as the average size and variance of a random inde-
pendent set, can also be approximated through a similar interpolation [JPSS22]. We note that in the
regime of�eorem 1.1 specifically at the point , = 1 (or in the regime of�eorem 1.3 at the point # = 0),
an FPTAS for the partition function that counts the number of independent sets in the hypergraph �
has already been found in [FGW+23], utilizing a different approach based on derandomization. How-
ever, as showcased by the following examples, zero-freeness have much broader applications beyond
deterministic approximation of partition functions.

�rough the well-known connection between central limit theorems and the zero-freeness of uni-
variate polynomials [LPRS16, MS19, JPSS22], we derive central limit theorems for hypergraph indepen-

dent sets. We consider the Gibbs measure `�,, associated with /
ly

�
(,), defined as follows:

∀f ∈ I(�), `�,, (f) =
1

/
ly

�
(,)

∏
E:f (E)=1

_E .

�e measure `�,, can be analytically continued to the complex plane through a connected zero-free

region, that is, regions where /
ly

�
(,) ≠ 0. Our multivariate zero-freeness for the hypergraph indepen-

dence polynomial is especially powerful. In principle, one can derive a central limit theorem for any
univariate projection of the polynomial. We demonstrate a natural example by giving a quantitative
central limit theorem (also known as Berry-Esseen inequality) for the size of a random independent set,
drawn from the Gibbs measure of hypergraph independent sets. Our new zero-free region and central
limit theorem (CLT) can be li�ed to a local CLT as in [JPSS22]. We defer the proof to Appendix A.

�eorem 1.5 (Central limit theorem for hypergraph independent sets). Fix : ≥ 2 and Δ ≥ 3. Let � =

(+, E) be a :-uniform hypergraph with maximum degree Δ. Let = = |+ |. Fix any X > 0, Y ∈
(
0, 1

9:5Δ2

)
.

Let _2,Y be defined as in �eorem 1.1. For any _ ∈ (X, _2,Y], let � ∼ `�,_, and define - = |� |, ¯̀ = E[-]
and f2 = Var[-]. �en we have f2 = Θ:,Δ,Y (_=) and

sup
C∈R
|P[(- − ¯̀)/f ≤ C] − P[Z ≤ C] | = $:,Δ, X,Y

(
log =
√
=

)
,

whereZ ∼ # (0, 1) is a standard Gaussian random variable.

Furthermore, let N(G) = e−G
2/2/
√
2c denote the density of the standard normal distribution, we have

sup
C∈Z

��P[- = C] − f−1N((C − ¯̀)/f)
�� = $:,Δ,Y

(
min

(
(log =)5/2

f2
,
1

f2
+ f

2: (log =)2
=:−1

))
.

As a side note, while there is rich literature on Markov chain central limit theorems (CLT), these
do not seem to apply to our context. Specifically, our CLT crucially captures the unimodality of the
stationary distribution itself, while Markov chain CLT concerns the sum of samples generated by a
Markov chain, and does not seem to distinguish between unimodal and multimodal distributions. Log-
Sobolev type inequalities (LSI), if available, would also give concentration tail estimates. But the recent
spectral independence framework for establishing LSI for Markov chains requires arbitrary pinnings,
which breaks the uniformity of hyperedges.

Inspired by [JPSS22], we give an FPTAS based on zero-freeness and local CLT, to approximate the
number of hypergraph independent sets of size C. �e proofs are deferred to Appendix B.

�eorem 1.6. Fix : ≥ 2, Δ ≥ 3. Let � = (+, E) be a :-uniform hypergraph with maximum degree Δ

and = = |+ |. Let Y, _2,Y be defined as in �eorem 1.1. �ere exists a deterministic algorithm which, on

input �, an integer 1 ≤ C ≤ =
(
1 − 1

1+_2,Y
·
(
1 + 1

4eΔ:3

))
, and an error parameter [ ∈ (0, 1), outputs an

[-relative approximation to the number of hypergraph independent sets of size C in time (=/[)$:,Δ, Y (1) .

Aconsequence of the Perron-Frobenius theorem for nonnegativematrices is that any ergodicMarkov
chain converges to a unique stationary distribution. However, the convergence behavior for complex
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transition matrices is much less understood. Central to our analysis is the systematic scan Glauber
dynamics with complex transition weights (see Definition 3.2 for a formal definition).

We show that it converges to the stationary measure in the same regime of �eorem 1.1.

�eorem 1.7 (Convergence of systematic scan Glauber dynamics with complex transitions). Under
the condition of �eorem 1.1, the systematic scan Glauber dynamics for the complex measure associated

with the independence polynomial /
ly

�
(,) converges.

1.3. Technical overview. A few challenges arise when trying to locate complex zeros through a
percolation-type argument. To extend the notion of probability measures to the complex plane, one
can formally define complex normalized measures as ratios between partition functions. However, a
generalization of statements such as “stochastically dominated by a sub-critical branching process” for
complex measures appears very challenging. In particular, the monotonicity of probability measures
crucially relies on the non-negativity axiom. Our key observation is that a factorization property,
which arises in decomposing the Glauber dynamics, can be translated to the complex plane.

Our starting point for locating complex zeros of /
ly

�
(,) is an induction on marginal measures. �is

approach is implicit in the Lee-Yang theorem and the Asano-Ruelle lemma [LY52, Asa70, Rue71], and is
applied more explicitly in the contraction method [PR19, LSS19, SS19]. We give a quick review below.

1.3.1. Locating complex zeros through marginal measures. Here we use the standard edge-wise self-
reducibility, consider a hypergraph � = (+, E) with E = {41, 42, . . . , 4<}, and let �8 = (+, E8) where
E8 = {41, 42, . . . , 48}. We write the partition function as: /� = /�0

∏<
8=1

/�8

/�8−1
. To establish /� ≠ 0, it

suffices to show
/�8

/�8−1
≠ 0 as it is clear that /�0

≠ 0. �e ratio
/�8

/�8−1
corresponds to amarginalmeasure,

which we explain in the context of hypergraph independence polynomial. A hypergraph independent

set f in �8−1 is an independent set in �8 if and only if f48 ≠ 1: . �us,
/�8

/�8−1
= 1 − `�8−1

(
f48 = 1:

)
,

where `�8−1 is the measure associated with /�8−1 . �en, one can set up an induction on 8: assuming
that /�8−1 ≠ 0, one shows that the marginal measure `�8−1

(
f48 = 1:

)
≠ 1, this implies /�8

≠ 0.

1.3.2. Marginal measures through information percolation on complex Markov chains. Our departure
from previous works on the absence of zeros is that we introduce a systematic scan Glauber dynamics
to analyze the marginal measures. Introducing Glauber dynamics is crucial in bypassing a barrier to
a be�er zero-free region for the hypergraph independence polynomial: strong spatial mixing does not
hold, and a computational tree construction does not preserve the uniformity of hyperedges.

Given a measure `�,, , Glauber dynamics is a canonical way of constructing a Markov chain with
stationary measure `�,, . In particular, the transition matrix of the Glauber dynamics, denoted by %, ,
can also be analytically continued to the complex plane through a connected zero-free region as `�,, is
well-defined. In particular, `�,, is a le� eigenvector for %, with eigenvalue 1. �e analysis of Markov
chains for _ ∈ R mainly concerns the spectral gap of %, , but the spectral gap usually tends to zero as
= goes to infinity (in the thermodynamics limit). Instead of a�empting a complex extension of spectral
theory, we work with the marginal measures generated by powers of the transition matrix %, .

To get a handle on the marginal measures, we take inspirations from the decomposition of Glauber
dynamics that arises in information percolation arguments for Markov chains [LS16, HSZ19, HSW21,
QWZ22, FGW+23]. In these applications, one starts by formulating the Markov chain on a space-time
slab (also known as a witness graph) so that updates, when viewed backward in time, behave like a
subcritical percolation. To do so, each step of the dynamics is decomposed into an oblivious update part,
which updates a site independent of its neighbors, and an adaptive (non-oblivious) part in which one
tries to make up the correct transition probability. By revealing the randomness used in these updates
backward in time, we either continue the revealing process due to an adaptive update or terminate it
upon encountering an oblivious update. Previously, this percolation argument has primarily been used
to bound the mixing rates of classical Markov chains [LS16, HSZ19] and to analyze the time required
for coalescence in grand coupling processes, such as coupling from the past (CFTP) [HSW21, QWZ22]
and its variant, coupling towards the past (CTTP) [FGW+23].

Our idea is to interpret a decomposition of Glauber dynamics as implicitly a decomposition of the
transition matrix %, , also into an oblivious part and an adaptive part. Say we “initialize” the Glauber
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dynamics with a complex measure `, viewed as a row vector, and we consider the measure generated
by ) steps of Glauber dynamics, which is the vector-matrix product `%)

,
. By expanding this summa-

tion, one can see that, upon encountering an oblivious part, the contribution to the sum “factorizes”.
In fact, the result of `%)

,
formally corresponds to summing over walks of length ) over a space-time

slab, where each node is weighted by the corresponding entry in the transition matrix. And the factor-
ization is what leads us to define “independence” for complex measures, which effectively allows us to
“terminate the percolation” just as in a standard argument. Central to our analysis is to show that, a�er
running the dynamics for sufficiently long, we can use the “oblivious updates” as a certificate/witness
for the measure of any event, in the sense that these witness sequences dominate the complex measure
`%)

,
. �is is formalized as Condition 3.10. �ese oblivious updates themselves are much easier to

analyze as they correspond to a product of complex measures.
By identifying the measure generated by `%)

,
as contributions from an information percolation on

a space-time slab (formally defined aswitness graphs in Definition 4.4) , we introduce several dynamics-
related quantities — bad vertices, bad components, bad trees (Definition 4.6) — to trace the information
percolation process (formally through Lemmas 4.7, 4.9 and 4.11). �en, we express the measure of any
configuration by these quantities. When the information percolation process terminates quickly (in the
sense of Condition 3.10), we can control the marginal measure using a product of complex measures.

1.3.3. Convergence of the complex systematic scan Glauber dynamics. �econvergence ofMarkov chains
in the real case is well understood thanks to the Perron-Frobenius theory and the coupling method. It
is unclear what the right generalizations to the complex plane should be. Using the information perco-
lation framework, we categorize the percolation processes as follows:

(1) processes that terminate before reaching the starting time (Lemma 4.7);
(2) processes that do not terminate before reaching the starting time (Lemma 4.11).

To establish convergence, it suffices to show that the contributions from type (2) processes diminish
to zero. Unlike standard percolation theory where the existence of limits are guaranteed by monotone
events, we have to give non-asymptotic bounds before taking an appropriate limit (see Lemma 4.11).
Combined, this allows us to show that the measure of any event is dominated by witness sequences
(Condition 3.10), and we give a proof of convergence in Lemma 3.11.

2. Preliminaries and notations

2.1. Complex normalized measures. Our technique involves dealing with complex measures, so
we provide some measure theory basics for our presentation.

Let ` : Ω → C be a complex measure over a measurable space (Ω,F ), where Ω is a finite set and
elements in F are called events. �e support of ` is defined as supp(`) , {G ∈ Ω | `(G) ≠ 0}. We say
` is normalized if

∑
l∈Ω

`(l) = 1. �e measure on � ∈ F is given by `(�) = ∑
l∈� `(l). Similar to

probability, for any event � ∈ F with `(�) ≠ 0, we can define the conditional measure of ` on � as a
restricted measure `(· | �) over the measure space (Ω,F�) where F� = {� ∩ � : � ∈ F } such that
for any � ∈ F ,

`(� | �) = `(� ∩ �)
`(�) .

Note that the conditional measure `(· | �) is always normalized when well-defined.
We say that two events �1, �2 ∈ F are independent if and only if, `(�1 ∩ �2) = `(�1) · `(�2).
More generally, for a finite sequence of events �1, �2, . . . �< ∈ F , we say they are mutually inde-

pendent if and only if, for any finite subset � ⊂ {1, 2, . . . , <}, it holds that

`

(⋂
8∈�

�8

)
=

∏
8∈�

`(�8).

For a finite sequence of events �1, �2, . . . , �< ∈ F we say that they are mutually disjoint if for any
8 ≠ 9 , �8∩� 9 = ∅. We also define the law of total measure. Let �1, �2, . . . , �< ∈ F be a finite sequence
of mutually disjoint events and let

⋃<
8=1 �8 = Ω. �en for any � ∈ F , we have that,
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`(�) =
<∑
8=1

`(� ∩ �8).

2.2. Graphical model and complex zeros. Let � = (+, E) be a hypergraph, where each vertex
E ∈ + represents a random variable that takes its value from a finite domain [@] = {1, 2, . . . , @} and
each hyperedge 4 ∈ E represents a local constraint on the set of variables 4 ⊆ + . For each E ∈ + ,
there is a function qE : [@] → C that expresses vertex activity (external fields), and for each 4 ∈ E ,
there is a function q4 : [@]4 → C that expresses (hyper)edge activity (nearest-neighbor interactions). A
graphicalmodel is specifiedby the tupleG = (�, (qE)E∈+ , (q4)4∈E), namely the hypergraph associated
with the family of vertex and edge activities. For each configuration f ∈ [@]+ , define its weight by

FG (f) ,
∏
E∈+

qE (fE)
∏
4∈E

q4 (f4).

�en the partition function /G of the graphical model G is given by

/ = /G ,
∑

f∈[@ ]+
FG (f).

We study the complex zeros of the partition function / of the graphical model in the following
aspects:

• with respect to the vertex activities (qE)E∈+ , also known as Lee-Yang zeros;
• with respect to the edge activities (q4)4∈E , also known as Fisher zeros.

When the partition function /G is non-zero, we can naturally associate it with a complex normalized

measure ` = `G , called the Gibbs measure, defined on the measurable space ([@]+ , 2[@ ]+ ), where

∀f ∈ [@]+ , `(f) = F (f)
/G

.

For any subset of variables Λ ⊆ + and a partial restriction f ∈ [@]Λ over Λ, we say f is feasible if
its measure is non-zero. For any disjoint (,Λ ⊆ + and any feasible f ∈ [@]Λ, we use `f

(
to denote the

marginal measure induced by ` on ( conditioned on f, i.e.,

∀g ∈ [@]( , `f
( (g) =

`(-( = g | -Λ = f)
`(f) .

2.3. Glauber dynamics: random scan and systematic scan. We need to work with a systematic
scan variant of the Glauber dynamics, which is a fundamental Markov chain for high-dimensional
measures. We recall the definitions here. Let ` be a distribution over [@]+ , with + = {E1, E2, . . . , E=}.
�e Glauber dynamics is a canonical construction of Markov chains with stationary distribution `.
Starting from an initial state -0 ∈ [@]+ with `(-0) > 0, the chain proceeds as follows at each step C:

• pick a variable E ∈ + uniformly at random and set -C (D) = -C−1(D) for all D ≠ E;

• update -C (E) by sampling from the distribution `
-C−1 (+\{E})
E .

�e systematic scan Glauber dynamics is a variant of Glauber dynamics that, instead of updating a
variable at random, one updates them in a canonical order. Specifically, at each step C, we choose the
variable E = E8 (C ) , where

8(C) , (C mod =) + 1.(1)

�en -C−1 is updated to -C using the same rule as in Glauber dynamics, based on the chosen E.
�e Glauber dynamics is well known to be both aperiodic and reversible with respect to `. �e

systematic scan Glauber dynamics is not time-homogeneous, as variables are accessed in a cyclic order.
However, by bundling = consecutive updates, we obtain a time-homogeneous Markov chain that is
aperiodic and reversible.
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2.4. 2-tree. We also need the notion of 2-trees [Alo91]. Given a graph � = (+, �), its square graph
�2 = (+, �2) has the same vertex set, while an edge (D, E) ∈ �2 if and only if 1 ≤ dist� (D, E) ≤ 2.

Definition 2.1 (2-tree). Let � = (+, �) be a graph. A set of vertices ) ⊆ + is called a 2-tree of � , if

• for any D, E ∈ ) , dist� (D, E) ≥ 2, and
• ) is connected on �2.

Intuitively, a 2-tree is an independent set that does not spread far away. We can construct a large
2-tree in any connected graph as follows.

Definition 2.2 (construction of a maximal 2-tree in a connected graph [JPV21, Lemma 4.5]). Let � =

(+, �) be a connected graph of maximum degree � and E ∈ + . We can deterministically construct a
2-tree ) of + containing E such that |) | ≥ ⌊|+ |/(� + 1)⌋ as follows:

• order the vertices in + in lexicographical order. Start with ) = {E} and * = + \ #+(E), where
#+(E) , # (E) ∪ {E} and # (E) , {D ∈ + | (D, E) ∈ �} ;
• repeat until* = ∅: let D be the vertex in* with the smallest distance to ) , with ties broken by
the order on + . Set ) ← ) ∪ {D} and * ← * \ #+(E).

�e following two lemmas bound the number of subtrees and 2-trees of a certain size containing a
given vertex, respectively.

Lemma 2.3 ([BCKL13, Lemma 2.1],[FGYZ21, Corollary 5.7]). Let� = (+, �) be a graph withmaximum

degree �, and E ∈ + be a vertex. �e number of subtrees in� of size : ≥ 2 containing E is at most
(e�):−1

2
,

and the number of 2-trees in � of size : ≥ 2 containing E is at most
(e�2 ):−1

2
.

3. Convergence of complex Markov chains

In this section, we present our framework for establishing new zero-free regions for certain polyno-
mials under local lemma conditions, as well as for proving the convergence of complex Markov chains.
We begin by defining a complex Markov chain: the complex systematic scan Glauber dynamics. �en,
our proof is carried out by li�ing the information percolation argument, a powerful technique com-
monly used to prove the rapid mixing of Markov chains [HSZ19, HSW21, QWZ22, FGW+23], to the
complex plane. Both zero-freeness and convergences are intrinsically related to bounding the marginal
measures, which can be interpreted as limiting the “randomness” of the Markov chain. We show that if
transition measures can be decomposed (as captured by Definition 3.7) we can apply a complex variant
of the information percolation argument to effectively bound the norm of the marginal measures.

3.1. Complex extensions of Markov chains.

3.1.1. Complex Markov chain. Wefirst define complex-valued transitionmatrices on a finite state space.
Let Ω be a finite state space. We say % ∈ CΩ×Ω is a complex-valued transition matrix if

∀f ∈ Ω,
∑
g∈Ω

%(f, g) = 1,

which is a direct extension of the classical row-stochastic matrix.
Fix ) ≥ 1. For a measurable space (Ω,F ) with finite Ω, we write Ω) for the Cartesian prod-

uct, and F ) for the product f-algebra. Let P be a complex normalized measure on (Ω) , F ) ) and
let -1, -2, . . . , -) be a sequence of measurable functions taking values over Ω following the mea-
sure P. �e sequence (-C ))C=1 is said to be a ) -step discrete-time complex Markov chain if there exists

a complex-valued transition matrix % ∈ CΩ×Ω such that for any 1 < 9 ≤ ) and any G1, G2, . . . , G 9 ∈ Ω,
P(- 9 = G 9 | -1 = G1, -2 = G2, . . . , - 9−1 = G 9−1) = P(- 9 = G 9 | - 9−1 = G 9−1) = %(G 9−1, G 9),

We o�en use % to refer to the corresponding Markov chain. For a complex normalized measure
a ∈ CΩ on Ω, the measure a% obtained via a one-step transition of the Markov chain from a is given
by

∀G ∈ Ω, (a%) (G) =
∑
H∈Ω

a(H)%(H, G).
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A complex normalized measure c over Ω is a stationary measure of % if c = c%. It is important to note
that for a generic complex row-stochastic matrices %, it may not have a stationary measure1, and even
if it does, it may not be unique.

Next, we define the convergence of the Markov chains with complex-valued transition matrices.

Definition 3.1 (convergence of the complex Markov chains). AMarkov chain with a complex-valued
transition matrix % and state space Ω is said to be convergent if, for any two complex normalized
measures ` and `∗ over Ω, it holds that

lim
)→∞

��`%) − `∗%)
��
1
= 0.

3.1.2. Complex Glauber dynamics. We introduce a complex extension of systematic scan Glauber dy-
namics for complex normalized measures. We do so through two equivalent viewpoints: formulating
the transition matrices with complex transition weights, and also a dynamics-based formulation. �e
la�er is more convenient for our analysis, and we note that the two are equivalent in the sense that
they eventually generate the same complex normalized measures.

Definition 3.2 (Complex extension of systematic scan Glauber dynamics). Let ` ∈ C[@ ]+ be a com-
plex normalized measure. �e complex systematic scan Glauber dynamics for the target measure ` is
defined by a sequence of complex-valued transitionmatrices %C ∈ CΩ×Ω for C ≥ 1, where with E = E8 (C )
(and 8(C) is as defined in (1)), the transition matrix %C is defined as

%C (f, g) ,
{
`
f (+\{E})
E (gE) if ∀D ≠ E, fD = gD,

0 otherwise.

Starting from an initial state g ∈ supp(`), the complexMarkov chain generates an induced complex

measure `C ∈ C[@ ]
+

which we define next. At time C = 0, we define `0(g) = 1 and `0(f) = 0 for all
f ∈ [@]+ \ {g}, and for C ≥ 1, we define `C , `C−1%C .

Remark 3.3 (well-definedness of the complex systematic scan Glauber dynamics). �e complex sys-
tematic scan Glauber dynamics, as defined in Definition 3.2, is well-defined as long as the conditional

measures `
f (+\{E})
E are well-defined for each f ∈ supp(`) and every E ∈ + . �en, the induced

complex measures `C remain normalized at any time.

We now present the dynamics-based formulation of the complex systematic scan Glauber dynamics
in Algorithm 1. Recall that the dynamics have a stationary measure `, an initial starting state g, and
we denote the associated induced complex measure by `GD

),g
. For technical convenience, we shi� the

timeline of the dynamics so that we are starting with a state f−) and the final state is f0.

Algorithm 1: Complex systematic scan Glauber dynamics

Input :An arbitrary initial configuration g ∈ supp(`) ⊆ [@]+ and an integer ) ≥ 1.
1 Set f−) ← g;

2 for C = −) + 1,−) + 2, . . . , 0 do
3 let fC ← fC−1 and E ← E8 (C ) , where 8(C) = (C mod |+ |) + 1;
4 let 2C follow the conditional measure `

fC−1 (+\{E})
E ;

5 update fC (E) ← 2C ;

Remark 3.4. It is important to emphasize that Algorithm 1 (as well as Algorithms 2 and 3, which
are introduced later) is not meant to be an efficient algorithm for sampling from a complex measure.
Rather, the “algorithms” described in this paper serve as analytical tools for establishing zero-freeness.

1While there is a le�-eigenvector with eigenvalue 1, it can sum up to 0, and cannot be normalized to a complex measure.

�is is also the main reason why convergence alone does not imply zero-freeness, as we need to rule out the possibility of

converging to an eigenvector that cannot be normalized.
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When we state “let 2 follow a complex normalized measure `” or “2 is drawn from a complex normal-
ized measure `”, we mean that the measure of 2 is the same as `. �is statement is conceptual rather
than operational; we do not a�empt to explicitly generate samples during runtime. Any subsequent
operation on 2 should be understood as a transformation applied to the complex normalized measure
of 2. It is worth noting that any finite segment of the complex measures is computable on a determin-
istic Turing machine in exponential time, provided all the involved measures can be described using
Gaussian rational numbers. �is can be achieved by explicitly enumerating all outcomes of the process.

Remark 3.5. It is straightforward to verify that the processes described in Definition 3.2 and Algo-
rithm 1 are essentially equivalent in the following sense: for any g∗ ∈ supp(`), we have `GD

),g
(fC =

g∗) = `C+) (g∗) for all −) ≤ C ≤ 0. �is can be routinely verified through induction on C.

In general, we lack convergence theorems for Markov chains with complex-valued transition ma-
trices in the literature, so we cannot immediately assert whether the complex measure a�er ) steps
converges to the target measure ` as ) → ∞. However, we can consider a complex process initialized
with the stationary measure `.

Definition 3.6 (stationary systematic scan Glauber dynamics). Consider the process defined in Algo-
rithm 1, but now with the initial state f−) following the measure `. We call this modified process the
) -step stationary systematic scan Glauber dynamics, and denote its induced measure as `GD

)
.

It is straightforward to verify that for all C ∈ [−), 0], the measure induced on fC under `
GD
)

pre-
cisely follows the measure `. Definition 3.6 will play an essential intermediate role in our proof of the
convergence of Glauber dynamics. Note that the measure `GD

)
is a linear combination of the measures

`GD
),f

over all starting states f ∈ supp(`). Later, by comparing with the stationary process in Defini-

tion 3.6, we will identify a sufficient condition (Condition 3.10) and prove (in Lemma 3.11) that, under
this condition, the Glauber dynamics starting from any initial state converges to a unique limiting
measure, which is precisely the stationary measure `.

3.2. Decomposition of transition measure. Inspired by the information percolation approach for
the real case, we consider the decomposition of the transition measure for a complex Markov chain.
Specifically, in the context of complex systematic scan Glauber dynamics, each transition measure
can be decomposed into two parts: an oblivious part, where the transition does not depend on the
current configuration; and an adaptive part, where the transition measure depends on the current
configuration. �is leads to the following formal definition of a decomposition scheme.

Definition 3.7 (decomposition scheme). Let ` ∈ C[@ ]+ be a complex normalized measure. For each
E ∈ + , we associate a complex normalized complex measure 1E : [@] ∪ {⊥} → C, and let b = (1E)E∈+ .

We define the b-decomposition scheme on ` as follows. For each E ∈ + and each feasible g ∈
[@]+\{E} (meaning that g can be extended to a f ∈ supp(`)), we define the measure `g,⊥E as

∀2 ∈ [@], `g,⊥E (2) ,
`gE (2) − 1E (2)

1E (⊥)
.

�en, the marginal measure `gE can be decomposed as:

(2) ∀2 ∈ [@], `gE (2) = 1E (2) + 1E (⊥) · `g,⊥E (2),
where we assume the convention 0 · ∞ = 0 to ensure that (2) still holds when 1E (⊥) = 0.

Remark 3.8. Intuitively, for each E ∈ + , the measure 1E serves as a “baseline measure” for all tran-
sition measures `gE at E. Ideally, 1E should be re-normalized from the lower envelope of all transition

measures `gE conditioned on an arbitrary feasible g ∈ [@]+\{E} , making it oblivious to the boundary
condition g. In contrast, the measure `g,⊥E captures the “excess” of `gE over this lower envelop, adapt-
ing to the boundary g. It can be verified that as long as each marginal measure `gE is well-defined, the
decomposition in (2) is always well-defined.

With this decomposition scheme, the complex systematic scan Glauber dynamics described in Algo-
rithm 1 can be reinterpreted as the process in Algorithm 2. We denote its induced measure as `GD

),g,b
.
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By equation (2), it is straightforward to verify that `GD
),g,b
(fC = ·) = `GD

),g
(fC = ·). Similarly, as in

Definition 3.6, we also consider the b-decomposed stationary systematic scan Glauber dynamics, and
denote its induced measure as `GD

),b
.

Algorithm 2: b-decomposed complex systematic scan Glauber dynamics

Input :An arbitrary initial configuration g ∈ supp(`) ⊆ [@]+ and an integer ) ≥ 1.
1 Set f−) ← g;

2 for C = −) + 1,−) + 2, . . . , 0 do
3 let fC ← fC−1 and E ← E8 (C ) , where 8(C) = (C mod |+ |) + 1;
4 let AC follow the measure 1E ;

5 if AC ≠ ⊥ then
6 let 2C ← AC ;

7 else

8 let 2C follow the measure `fC ,⊥
E ;

9 update fC (E) ← 2C ;

�is decomposition of Markov chain transitions is a complex extension of similar decompositions
based on unconditional marginal lower bounds in the real case [AJ22, HWY22, FGW+23].

�e purpose of this decomposition of transition measures is to determine each update’s outcome
without relying on knowledge of the current configuration. By carefully selecting the baseline com-
plex measures b, this approach allows us to infer the outcome of Glauber dynamics in the following
scenarios:

• Infer the final outcome f0 of the chain without knowing the initial configuration f−) as ) →
∞, showing convergence of the complex Glauber dynamics.
• Infer f0(E) in the complex Glauber dynamics, through independent measurable functions AC
following the baseline measures b, which enables the application of information percolation
analysis to bound marginal measures and establish zero-freeness.

3.3. Convergence of systematic scan Glauber dynamics. We now formalize the above arguments.
We first define the situations in which a realization 1 of r = (AC )0C=−)+1, as used in Algorithm 2, can
certify the induced measure over the occurrence of a particular event regarding the final outcome f0,
regardless of what the initial state is.

Definition 3.9 (witness sequence). Fix ) ≥ 1. Let b = (1E)E∈+ be a collection of complex normalized
measures. Consider a b-decomposed complex systematic scan Glauber dynamics as in Algorithm 2.
For any event � ⊆ [@]+ , we say a sequence 1 = (dC )0C=−)+1 ∈ ([@] ∪ {⊥})) is a witness sequence with
respect to � if

∀f, g ∈ [@]+ , `GD
),f,b (f0 ∈ � | r = 1) = `GD

),g,b (f0 ∈ � | r = 1),
denoted as 1 ⇒ �. Otherwise, we denote 1 ; �.

�e following is a sufficient condition for the convergence of the complex systematic scan Glauber
dynamics.

Condition 3.10 (a sufficient condition for convergence). Assuming the systematic scan Glauber dy-

namics in Algorithm 3 is well-defined2, there exists a sequence of sets {�() )})≥1 such that for each ) ≥ 1,

�() ) ⊆ ([@] ∪ {⊥})) satisfies the following conditions for all configurations g ∈ [@]+ :
• For all 1 ; {g}, it holds 1 ∈ �() ); thus, �() ) contains all non-witness sequences for {g}.

2Recall that for the Glauber dynamics to be well-defined, the measure ` must also be well-defined, which requires the

partition function to be non-zero. �is may seem odd, as Condition 3.10 will be used to imply the convergence of the Glauber

dynamics, which, in turn, will be used to establish the zero-freeness of the partition function. However, as explained in the

technical overview (Section 1.3.1), this implicationwill be carried out as an inductive argument that avoids circular reasoning.
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• For any initial configuration f ∈ supp(`), the following limit exists and satisfies:

lim
)→∞

������
∑

1∈�() )
`GD
),f,b (r = 1) · `GD

),f,b (f0 = g | r = 1)

������ = 0.

By the law of total measure, Condition 3.10 translates to:���`GD
),f,b (f0 = g ∧ r ∈ �() ))

���→ 0 as ) → ∞.(3)

Ideally, for each individual sample g ∈ [@]+ , we are concerned with the set of all non-witnesses for

the event {g}, and want to establish that
���`GD

),f,b
(f0 = g ∧ r ; {g})

���→ 0 as ) → ∞. Instead, Condi-
tion 3.10 guarantees the existence of �() ) of non-witnesses for every ) with respect to any elementary
event {g}. We note that although complex measures may not be monotone, this condition suffices as
it effectively reduces to reasoning about a product measure on witness sequences.

�e sufficiency of Condition 3.10 is formalized by the following lemma.

Lemma 3.11 (convergence of complex systematic scan Glauber dynamics). Assume that there exists

a b-decomposition scheme such that Condition 3.10 holds. �en, the complex systematic scan Glauber

dynamics converges to ` as ) → ∞, starting from any initial configuration f ∈ supp(`).

Proof. Recall that applying the b-decomposition scheme does not affect the induced measure on f0.
We claim that for any two initial configurations f, f′ ∈ supp(`), the following always holds:

(4) ∀g ∈ [@]+ , lim
)→∞

���`GD
),f,b (f0 = g) − `GD

),f′ ,b (f0 = g)
��� = 0.

Assuming (4), we compare the chain `GD
),f,b

starting from an arbitrary initial state f ∈ supp(`) with
the stationary chain (Definition 3.6). By the triangle inequality,

���`GD
),f,b (f0 = g) − `(g)

��� =
������`GD

),f,b (f0 = g) −
∑

f′∈supp(`)
`(f′)`GD

),f′ ,b (f0 = g)

������
≤

∑
f′∈supp(`)

|`(f′) |
���`GD

),f,b (f0 = g) − `GD
),f′ ,b (f0 = g)

��� .
According to (4), as ) → ∞, the right-hand side approaches 0. �us, the complex systematic scan
Glauber dynamics converges to `.

We then complete the proof by establishing (4). For any ) ≥ 1, let �() ) ⊆ ([@] ∪ {⊥})) be the set
of non-witness sequences satisfying Condition 3.10. For any g ∈ [@]+ , we have:

lim
)→∞

���`GD
),f,b (f0 = g) − `GD

),f′ ,b (f0 = g)
���

(★) = lim
)→∞

������
∑

1∈ ([@ ]∪{⊥}))
`GD
),f,b (r = 1) ·

(
`GD
),f,b (f0 = g | r = 1) − `GD

),f′ ,b (f0 = g | r = 1)
)������

(N) = lim
)→∞

������
∑

1∈�() )
`GD
),f,b (r = 1) ·

(
`GD
),f,b (f0 = g | r = 1) − `GD

),f′ ,b (f0 = g | r = 1)
)������

(�) ≤0,

which implies (4). Here, the (★) inequality follows from the law of total measure, along with the
observation that `GD

),f,b
(r = 1) does not depend on f. �e (N) equality follows from Definition 3.9

and that all 1 ∈ ([@] ∪ {⊥})) \ �() ) satisfy d ⇒ {g}. �e (�) inequality follows from the triangle
inequality and Condition 3.10. �is completes the proof. �
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3.4. Bounding the marginal measures. Assume Condition 3.10. We now explain how to bound the
marginal measure of an event � ⊆ [@]+ . For any ) ≥ 1. Let S be the set of sequences 1 = (d8)08=−)+1
where each d8 ∈ [@] ∪ {⊥}. Note that Condition 3.10 immediately implies that there is a set �() ) ⊆
([@] ∪ {⊥})) such that for any event � ⊆ [@]+ , and for any 1 ∉ �() ), it holds that 1 ⇒ �. Consider
the stationary systematic scan Glauber dynamics (Definition 3.6), for any event � ⊆ [@]+ , by the
triangle inequality,

|`(�) | =

������
∑

f∈supp(`)
`(f) ©­«

∑
d∉�() )

`GD
),f,b (f0 ∈ � ∧ r = 1) +

∑
d∈�() )

`GD
),f,b (f0 ∈ � ∧ r = 1)ª®¬

������
≤

������
∑

f∈supp(`)
`(f)

∑
d∉�() )

`GD
),f,b (f0 ∈ � ∧ r = 1)

������
+

������
∑

f∈supp(`)
`(f)

∑
d∈�() )

`GD
),f,b (f0 ∈ � ∧ r = 1)

������ .
For any 1 ∉ �() ), since 1 is a witness sequence for �, we have that for any f, g ∈ supp(`),∑

d∉�() )
`GD
),g,b (f0 ∈ � ∧ r = 1) =

∑
d∉�() )

`GD
),f,b (f0 ∈ � ∧ r = 1).

By this equation and since ` is a complex normalized measure, the previous bound for |`(�) | can be
expressed as follows, a�er fixing an arbitrary g ∈ supp(`):

|`(�) | ≤

������
∑

d∉�() )
`GD
),g,b (f0 ∈ � ∧ r = 1)

������ +
������

∑
f∈supp(`)

`(f)
∑

d∈�() )
`GD
),f,b (f0 ∈ � ∧ r = 1)

������
≤

������
∑

d∉�() )
`GD
),g,b (f0 ∈ � ∧ r = 1)

������ +
∑

f∈supp(`)
`(f)

������
∑

d∈�() )
`GD
),f,b (f0 ∈ � ∧ r = 1)

������ .
As ) → ∞, according to Condition 3.10, we know that for any f ∈ supp(`),

lim
)→∞

������
∑

1∈�() )
`GD
),f,b (f0 ∈ � ∧ r = 1)

������ = 0.

�erefore, as ) → ∞, we have

(5) |`(�) | ≤

������
∑

d∉�() )
`GD
),g,b (f0 ∈ � ∧ r = 1)

������ =
������

∑
d∉�() )

`GD
),g,b (r = 1) · `GD

),g,b (f0 ∈ � | r = 1)

������ .
�is, in turn, enables us to establish zero-freeness results using edge-wise self-reducibility. It re-

mains to demonstrate how to establish Condition 3.10 and to upper bound the right-hand side in (5).
Note that for any sequence 1 ∈ ([@] ∪ {⊥})) and any initial configuration g ∈ supp(`), the measure
`GD
),g,b
(r = 1) can be computed directly, as r follows a product measure. �e primary technical chal-

lenge then lies in characterizing the bound on the measure `GD
),g,b
(f0 ∈ � | r = 1) through useful

properties of witness sequences 1. However, this characterizationmay depend on the concrete models.
�erefore, we do not aim to provide a generic method for establishing Condition 3.10 and bounding
the marginal measure through (5). Instead, we will show in the following section how to apply this
general framework to the hypergraph independence polynomials, yielding the desired zero-free and
convergence results.
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4. Lee-Yang zeros of the hypergraph independence polynomial

In this section, we will show how to apply the general framework developed in the previous section
to establish both the absence of Lee-Yang zeros and the convergence of complex Glauber dynamics for
the hypergraph independence polynomials. Specifically, we will prove �eorems 1.1 and 1.7.

Consider a hypergraph � = (+, E) with |+ | = =. A configuration f ∈ {0, 1}+ is called an indepen-

dent set of � if for every hyperedge 4 ∈ E , there exists at least one vertex E ∈ 4 such that f (E) = 0.
Let I(�) ⊆ {0, 1}+ denote the set of all independent sets of �. �e independence polynomial of the
hypergraph � on Lee-Yang zeros is defined as

/
ly

�
(,) =

∑
f∈I(� )

∏
E:f (E)=1

_E,

where , = (_E)E∈+ is a vector of complex-valued parameters associated with the vertices.

Provided that /
ly

�
(,) ≠ 0, the associated (complex-valued) Gibbs measure ` = `�,_ : {0, 1}+ → C

is defined as

∀f ∈ I(�), `(f) = `�,_ (f) =
∏

E:f (E)=1 _E

/
ly

�
(,)

.

�e following presents a sufficient condition for the hypergraph � = (+, E) with complex vertex

weights , ∈ C+ such that /
ly

�
(,) ≠ 0, indicating that , is not a complex zero of /

ly

�
.

Condition 4.1. For the hypergraph � = (+, E) with complex vertex weights , ∈ C+ , the following
holds. Fix an arbitrary ordering of hyperedges E = {41, 42, . . . , 4<}. For each 0 ≤ 8 ≤ <, let E8 =

{41, 42, . . . , 48} and �8 = (+, E8). For each 0 ≤ 8 < <:
/
ly

�8
(,) ≠ 0 =⇒

��`�8 ,, (f (48+1) = 148+1)
�� < 1,

where 14 ∈ {0, 1}4 denotes the partial configuration that assigns all vertices in 4 to 1.

As discussed in Section 1.3.1, assuming Condition 4.1, we can routinely establish /
ly

�
(,) ≠ 0 through

induction by using the edge-wise self-reducibility. A similar argument was used in [PR19, LSS19, SS19].

4.1. Complex Glauber dynamics on hypergraph independent sets. Our proofs of zero-freeness
and convergence of Glauber dynamics utilize the framework of b-decomposed complex systematic
scan Glauber dynamics for the Gibbs measure `, introduced in Section 3.

We first verify that the transition measures are well-defined. Note that supp(`) = I(�). For any
E ∈ + and any f ∈ supp(`), the marginal measure `

f (+\{E})
E is defined as follows:

• If f remains an independent set a�er se�ing f (E) ← 1, then

`
f (+\{E})
E (0) = 1

1 + _E
and `

f (+\{E})
E (1) = _E

1 + _E
.

• Otherwise, if f is not an independent set a�er se�ing f (E) ← 1, then

`
f (+\{E})
E (0) = 1 and `

f (+\{E})
E (1) = 0.

�us, according to this definition, for any E ∈ + where _E ≠ −1, the conditional measure `
f (+\{E})
E is

well-defined for any f ∈ supp(`).
With these marginal measures, we construct the following b-decomposition scheme (Definition 3.7).

Specifically, b = (1E)E∈+ is the collection of normalized measures over {0, 1,⊥} defined as follows:

(6) 1E (2) =




1
1+_E

if 2 = 0,

0 if 2 = 1,
_E

1+_E
if 2 = ⊥.

�en, for any E ∈ + and independent set g ∈ {0, 1}+\{E} , the excess marginal measure `g,⊥E is given
by:

• If g remains an independent set a�er including E, then

`g,⊥E (0) = 0 and `g,⊥E (1) = 1.
14



• Otherwise, if g is no longer an independent set a�er including E, then

`g,⊥E (0) = 1 and `g,⊥E (1) = 0.

Using this b-decomposition scheme, the measure on AC = 1 is always 0, so we can assume that r =
(AC)0C=−)+1 ∈ {0,⊥}) . �en, the systematic scan Glauber dynamics for the hypergraph independence
polynomial can be expressed as follows in Algorithm 3, which is a specialization of Algorithm 2.

Algorithm 3: Systematic scan Glauber dynamics for hypergraph independence polynomial
(under the b-decomposition scheme specified in (6))

Input :An arbitrary independent set g ∈ I(�) and an integer ) ≥ 1.
1 Set f−) ← g;

2 for C = −) + 1,−) + 2, . . . , 0 do
3 let fC ← fC−1 and E ← E8 (C ) , where 8(C) = (C mod =) + 1;
4 let AC follow the measure 1E specified in (6);

5 if AC ≠ ⊥ then
6 let 2C ← 0;

7 else if there exists a hyperedge 4 ∈ E such that E ∈ 4 and fC−1(D) = 1 for all D ∈ 4 \ {E} then
8 let 2C ← 0;

9 else
10 let 2C ← 1;

11 update fC (E) ← 2C ;

4.2. Zero-freeness of hypergraph independence polynomial. We define the following quantities
for a hypergraph � = (+, E) with vertex weights , = (_E)E∈+ , for characterizing zero-freeness.
Definition 4.2. Let � = (+, E) be a hypergraph with maximum edge size : and maximum vertex
degree Δ. Let , = (_E)E∈+ ∈ C+ be the complex vertex weights such that _E ≠ −1 for each E ∈ + .

We define the following quantities:

# = # (�, ,) , max
4∈E

∏
E∈4

���� _E

1 + _E

���� ,
" = " (�, ,) , max

E∈+

(���� _E

1 + _E

���� +
���� 1

1 + _E

����
)
,

U = U(�, ,) , # · "4Δ2:5 .

�e regime for zero-freeness and convergence of Glauber dynamics, as stated in �eorems 1.1
and 1.7, is characterized by these quantities through the following lemma.

Lemma 4.3 (Inductive step). Let � = (+, E) be a hypergraph with maximum edge size : and maximum

vertex degree Δ. Let , = (_E)E∈+ ∈ C+ be the complex vertex weights such that∀E ∈ +, _E ≠ −1. Suppose:
(7) 8eΔ2:4 · U < 1.

�en, we have:

(1) Condition 3.10 holds for the systematic scan Glauber dynamics described in Algorithm 3.

(2) Condition 4.1 holds for the hypergraph � = (+, E) with complex vertex weights , = (_E)E∈+ .
�e reason Lemma 4.3 is referred to as the “inductive step” will be clarified in its following applica-

tion to proving our main results, �eorems 1.1 and 1.7, where the lemma will be used to carry out the

inductive step and establish zero-freeness of the partition function /
ly

�
(,).

Proofs of �eorem 1.1 and �eorem 1.7. We first verify that the conditions in �eorem 1.1 satisfy (7).
Assume the condition in �eorem 1.1. It is already ensured that _E ≠ −1 for each E ∈ + .

First, we bound # . For any _ ∈ DY , let _
∗ ∈ [0, _2,Y] be the nearest point to _. We have that���� _

1 + _

���� ≤ _∗ + Y
1 + _∗ − Y ≤

(
2
√
2eΔ:2

)−2/:
,

15



where the first inequality is due to the triangle inequality, and the second is due to conditions in

�eorem 1.1. �is implies # ≤
(
2
√
2eΔ:2

)−2
.

�en, we bound " . For any _ ∈ DY , let _
∗ ∈ [0, _2,Y] be the nearest point to _. We have that���� _

1 + _

���� +
���� 1

1 + _

���� = 1 + |_ |
|1 + _ | ≤

1 + _∗ + Y
1 + _∗ − Y ≤

1 + Y
1 − Y ,

which implies " ≤ 1+Y
1−Y .

Recall U = # · "4Δ2:5 . Now, we can verify the condition in (7):

8eΔ2:4 · U = 8eΔ2:4
(
2
√
2eΔ:2

)−2 (
1 + Y
1 − Y

)4Δ2:5

≤ e−1 exp

(
2Y

1 − Y4Δ
2:5

)
< 1.

�is shows (7) is satisfied. By Lemma 4.3, Condition 3.10 and Condition 4.1 hold directly.
We then use Condition 4.1 to prove�eorem1.1. �is is by induction, using edge-wise self-reducibility.

Recall the E = {41, 42, . . . , 4<}, E8 = {41, 42, . . . , 48} and �8 = (+, E8), for each 0 ≤ 8 ≤ <, defined in

Condition 4.1. Now we prove by induction that /
ly

�8
(,) ≠ 0 for each 0 ≤ 8 ≤ <.

For the induction basis, we have /
ly

�0
(,) = ∏

E∈+ (1 + _E) ≠ 0, since _E ≠ −1 for all E ∈ + .
For the induction step, fix 0 ≤ 8 < < and assume that /

ly

�8
(,) ≠ 0. �en the measure `�8 ,, is well-

defined. Also, when _E ≠ −1 for each E ∈ + , the systematic scan Glauber dynamics in Algorithm 3 is
well-defined. We further note that

/
ly

�8+1
(,)

/
ly

�8
(,)

=

/
ly

�8
(,) − ∑

f∈{0,1} |+ |
f (48+1 )=148+1

∏
E:f (E)=1

_E

/
ly

�8
(,)

= 1 − `�8 ,, (f (48+1) = 148+1) ≠ 0,

where the last inequality follows fromCondition 4.1. �erefore, /
ly

�8+1
(,) ≠ 0, completing the induction

step and therefore proving �eorem 1.1.
Finally, �eorem 1.7 holds directly assuming Condition 3.10, according to Lemma 3.11. �

4.3. Information percolation on thewitness graph. In the remainder of this section, we will focus
on the proof of Lemma 4.3. To achieve this, we will construct an information percolation argument to
analyze the complex systematic scan Glauber dynamics described in Algorithm 3.

A key step in our analysis is to bound the marginal measure. Our idea is to split the contribution to
the marginal measure into two types: those coming from small bad trees and those coming from large

bad trees, which we formally define later. �en our proof strategy consists of the following three steps:

(1) Prove that small bad trees characterizewitness sequences (corresponding to oblivious updates);
(2) Bound the contribution from small bad trees;
(3) Prove that contribution from large bad trees diminishes to zero under a suitable limit.

�ese three steps correspond to Lemmas 4.7, 4.9 and 4.11 respectively. We setup the formulations
necessary for a proof of Lemma 4.3, and defer the proofs of these lemmas to Section 5.

For any D ∈ + and integer C, we denote by predD (C) the last time before C at which D is updated, i.e.

predD (C) , max{B | B ≤ C such that E8 (B) = D}.
For any subset of vertices* ⊆ + and C ∈ Z≤0, define

TS(*, C) , {predE (C) | E ∈ *}
as the collection of “timestamps” of the latest updates of vertices in* up to time C.

Recall the definition of witness sequences from Definition 3.9. For an event � ⊆ {0, 1}+ , we try to
characterize the witness sequence with respect to �. Let ( = vbl(�) ⊆ + denote the set of variables
on which the event � is defined. Formally,

vbl(�) , {E ∈ + | ∃f ∈ � s.t. f′ ∉ � where f = f′ except at E}.
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If AC ≠ ⊥ for all C ∈ TS((, 0), we can directly infer whether f0 ∈ � regardless of the initial state,
indicating that r is a witness sequence. Otherwise, according to Algorithm 3, for those E ∈ ( with
ApredE (0) = ⊥, we need to determine if the condition in Line 7 holds at time predE (0) for r to qualify as
a witness sequence. �e argument can be applied recursively, allowing the characterization of witness
sequences to percolate through the time-space structure of the systematic scan Glauber dynamics. As
such, we focus on keeping track of the complex measure of “percolation of assigning AC = ⊥”.

To formalize this argument, we introduce the definition of awitness graph, a combinatorial structure
shown to be useful for analyzing Glauber dynamics [HSZ19, HSW21, QWZ22, FGW+23].

Definition 4.4 (witness graph/space-time slab). Given a hypergraph � = (+, E) and a subset of
variables ( ⊆ + , the witness graph �(

�
=

(
+(
�
, �(

�

)
is an infinite graph with the vertex set

+(
� = {TS(4, C) | 4 ∈ E, C ∈ Z≤0} ∪ {TS((, 0)},

and �(
�
consists of undirected edges between vertices G, H ∈ +(

�
such that G ≠ H and G ∩ H ≠ ∅.

�e following structural property of the witness graph has been established in [FGW+23].

Lemma 4.5 ([FGW+23, Corollary 6.15]). Assume the hypergraph � = (+, E) has a maximum degree Δ

and a maximum edge size : . �en, in the witness graph �(
�

=
(
+(
�
, �(

�

)
, for any E ∈ +(

�
\ {TS((, 0)},

the degree of E is at most 2Δ:2 − 2. Furthermore, the degree of TS((, 0) is at most 2Δ: |( | − 1.

We formalize the following notions of bad structures within the witness graph.

Definition 4.6 (bad vertices, bad components, and bad trees). Let � = (+, E) be a hypergraph, and let
�(

�
= (+(

�
, �(

�
) be the witness graph as in Definition 4.4. Let ) ≥ 1, and let r = (AC)0C=−)+1 ∈ {0,⊥}) .

• �e set of bad vertices +bad = +bad (r) is defined as:
+bad , {E ∈ +(

� | ∀C ∈ E,−) + 1 ≤ C ≤ 0 and AC = ⊥} ∪ {TS((, 0)},
which contains TS((, 0) and the vertices in the witness graph such that all AC evaluates to⊥ for
every timestamp C associated with that vertex.
• Let �(

�

[
+bad

]
be the subgraph of the witness graph �(

�
induced by +bad.

• �e bad component Cbad = Cbad (r) ⊆ +bad is defined as the maximal set of vertices in +bad

containing TS((, 0) that is connected in �(
�

[
+bad

]
.

• �e bad tree T bad = T bad (r) ⊆ +bad is defined as the 2-tree of the induced subgraph�(
�

[
Cbad

]
containing TS((, 0), constructed deterministically using Definition 2.2. We further denote this
deterministic construction as a mapping T from the bad component such that T bad = T(Cbad).

At first glance, the constructions of these structures may seem technically involved and uneasy to
decipher. However, the intuition behind them is quite clear. Specifically, the bad tree T bad acts as a
“certificate” for the undesirable situation where the percolation process, starting from time 0, actually
reaches the initial time −) . Consequently, the event at time 0 cannot be successfully inferred solely
from the “randomness” r used in the oblivious transitions in the Glauber dynamics in Algorithm 3.

For two measurable events � and �, we say � is determined by � if either � ⊇ � or � ∩ � = ∅. We
can then characterize the witness sequences (Definition 3.9) for an arbitrary event as follows.

Lemma 4.7 (characterization of witness sequences). Fix any ) ≥ = and any event � ⊆ {0, 1}+ .
Consider the witness graph �(

�
=

(
+(
�
, �(

�

)
constructed using the set of variables ( = vbl(�). Let

1 = (dC )0C=−)+1 ∈ {0,⊥}) . If the corresponding bad tree T bad(1) in the witness graph �(
�
satisfies:

��T bad (1)
�� ≤ )

2=
− 2,

where = = |+ |, then the following holds:

(1) 1 ⇒ �, i.e., 1 is a witness sequence with respect to the event �;

(2) for any initial f ∈ supp(`), the occurrence of � at time 0 is determined by Cbad (1) and 1TS((,0) .

�e proof of Lemma 4.7 is deferred to Section 5.1.
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Remark 4.8 (zero-one law). Lemma 4.7-(2) implies the following “zero-one law” for the measure of
an event � at time 0:

(8) `GD
),f,b

(
f0 ∈ � | Cbad (r) = Cbad (1) ∧ rTS((,0) = 1TS((,0)

)
∈ {0, 1},

provided the conditionalmeasure iswell-defined, i.e., the event Cbad (r) = Cbad (1)∧rTS((,0) = 1TS((,0)
has non-zero measure.

�is “zero-one law” serves as a key tool that enables us to compare complex normalizedmeasures of
different events. For complexmeasures `, the standardmonotonicity property |`(�∩�) | ≤ |`(�) | does
not generally hold. However, by assuming the “zero-one law”, where `(� | �) ∈ {0, 1}, monotonicity
can be recovered as follows:

|`(� ∩ �) | = |`(�) | |`(� | �) | ≤ |`(�) |.
�is is crucial for our analysis of zero-freeness.

Next, we bound the total contribution to the marginal measure coming from a bad tree. Recall that
in Definition 4.6, we use T to denote the deterministic construction of the bad tree T bad = T(Cbad)
from a bad component Cbad. To do so, we upper bound on the measure of any set of bad components
Cbad that could potentially produce the given bad tree T bad through the function T bad = T(Cbad).

Lemma 4.9. Fix any ( ⊆ + and ) ≥ = with |( | = : . Consider the witness graph �(
�
, the bad component

Cbad = Cbad (r), and the bad tree T bad = T bad (r) = T(Cbad) , where r = (AC)0C=−)+1 ∈ {0,⊥}) is

constructed as in Algorithm 3, following the product measure in (6).
�en, for any f ∈ supp(`), for any finite 2-tree T in �(

�
containing TS((, 0), we have

(9)
∑

C∈T−1 (T)

���`GD
),f,b

(
Cbad = C ∧ rTS((,0) = ⊥TS((,0)

)��� ≤ U | T | ,
where rTS((,0) = ⊥TS((,0) represents the event that AC = ⊥ for all timestamps C ∈ TS((, 0).

�e proof of this lemma is deferred to Section 5.2.
We have the following bounds on the number of possible bad trees with a given size 8.

Lemma 4.10. Let T8 denote the set of possible 2-trees of size 8 in �(
�
containing TS((, 0). �en le�ing

�1 = 4Δ2:4 and �2 = 4Δ2:3 |( |, we have
(10) |T8 | ≤ (e(�2 + 8 − 2))�2−1 · (e�1)8−1,
Also, when |( | ≤ : , we have a refined bound that

(11) |T8 | ≤ (e�1)8−1.

Proof. Note that by Definition 2.1, each possible T ∈ T8 satisfies:
• T contains TS((, 0);
• T does not contain any E ∈ +(

�
such that (TS((, 0), E) ∈ �(

�
;

• T is connected in
(
�(

�

)2
, the square graph of �(

�
.

Recall that by Lemma 2.3, for a graph with maximum degree 3, the number of subtrees of size 8 ≥ 1

containing a fixed vertex is upper bounded by (e3)8−1. By Lemma 4.5, we have that all vertices, except

those within distance 1 of TS((, 0) in �(
�
, have a degree at most �1 = 4Δ2:4 in

(
�(

�

)2
. Also, TS((, 0)

has a degree of at most �2 = 4Δ2:3 |( | in
(
�(

�

)2
. �en, we can bound the size of T8 as:

|T8 | ≤
(
�2 + 8 − 2
�2 − 1

)
· (e�1)8−1 ≤

(
e(�2 + 8 − 2)
�2 − 1

)�2−1
· (e�1)8−1 ≤ (e(�2 + 8 − 2))�2−1 · (e�1)8−1,

which finishes the proof of (10). Here, the first inequality follows by enumerating the size of the subtree

on each neighbor of TS((, 0) and applying Lemma 2.3 to each neighbor of TS((, 0) in
(
�(

�

)2
.

When |( | ≤ : , by Lemma 4.5, the maximum degree of �(
�
is upper bounded by 2Δ:2. �erefore,

(11) is a direct consequence of Lemma 2.3. �
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We still need onemore technical lemma that ensures the decayof percolation. Recalling Lemma 4.7-(1),
small bad trees characterize witness sequences. �e following lemma says that that under (7), large
bad trees have diminishing contributions to the marginal measure.

Lemma 4.11. Fix any ( ⊆ + and ) ≥ =. Consider the witness graph �(
�

and the bad tree T bad =

T bad (r), where r = (AC )0C=−)+1 ∈ {0,⊥}) is constructed as in Algorithm 3, following the product measure

in (6). Under the condition of U in (7), it holds for any initial configuration f ∈ supp(`) and any

g ∈ {0, 1}+ ,

(12) lim
)→∞

���`GD
),f,b

(
f0 = g ∧ |T bad | > )/(2=) − 2

)��� = 0.

�e proof of Lemma 4.11 is deferred to Section 5.3.
We are now ready to establish the inductive step for the convergence of Glauber dynamics and the

zero-free region of the hypergraph independence polynomial, which is the content of Lemma 4.3.

4.4. Establishing the inductive step (Lemma 4.3). We start with the proof of Lemma 4.3-(1).

Proof of Lemma 4.3-(1). It suffices to verify Condition 3.10. We take �() ) in Condition 3.10 as the
following event on r:

(13) �() ) :
��T bad (r)

�� > )

2=
− 2.

According to Lemma 4.7, the definition of �() ) in (13) indeed contains all non-witness sequences,
verifying the first item of Condition 3.10. �e second item of Condition 3.10 follows from Lemma 4.11.

�

Next, we prove Lemma 4.3-(2).

Proof of Lemma 4.3-(2). �roughout the proof, we use #, ", U to denote# (�, ,)," (�, ,) andU(�, ,),
where � = �<, respectively. Fix an arbitrary 0 ≤ 8 < <. Let ` = `�8 ,, . Assuming /

ly

�8
(,) ≠ 0, ` is

well-defined. �en, our goal is to prove that, the marginal measure on 48+1 being assigned all-one, de-
noted by `48+1 (148+1), is bounded away from 1. Consider the complex systematic scan Glauber dynam-
ics on �8 . Fix any initial configuration f ∈ supp(`). Note that from Lemma 3.11 and Lemma 4.3-(1),
we have

(14) lim
)→∞

`GD
),f,b (f0(48+1) = 148+1) = `48+1 (148+1) .

�erefore, it suffices to show that

���� lim)→∞
`GD
),f,b

(f0(48+1) = 148+1)
���� < 1. Next, we notice that for G ∈ C,

the function |G | is a continuous function. Because the limit in (14) exists, we have���� lim)→∞
`GD
),f,b (f0(48+1) = 148+1)

���� = lim
)→∞

���`GD
),f,b (f0(48+1) = 148+1)

��� .
�erefore, it suffices to show that

(15) lim
)→∞

���`GD
),f,b (f0(48+1) = 148+1)

��� < 1.

Note that by combining (14) with (15), the lemma is proved. It remains to prove (15).
We set ( = 48+1 . Recall the witness graph �(

�8
(Definition 4.4) and related definitions in Definition 4.6.

For each 8 ≥ 1, let T8 denote the set of possible 2-trees in �(
�
containing TS((, 0). Recall the definition

of the bad component Cbad = Cbad (r) in Definition 4.6 and that we use T to denote the construction
in Definition 2.2 such that T(Cbad) = T bad. It is important to note that

(16) f0(48+1) = 148+1 =⇒ AC = ⊥ for all C ∈ TS(48+1, 0).
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To see this, recall that in Algorithm 3, in order to update a value to 1 at time C, AC = ⊥. By Lemma 4.11,

(17)

lim
)→∞

���`GD
),f,b (f0(48+1) = 148+1)

���
≤ lim

)→∞

����`GD
),f,b

(
f0(48+1) = 148+1 ∧

��T bad
�� ≤ )

2=
− 2

)����
≤ lim

)→∞

⌊ )
2=
−2⌋∑

9=1

∑
T∈T9

���`GD
),f,b

(
f0(48+1) = 148+1 ∧ T bad = T

)���

(by (16)) = lim
)→∞

⌊ )
2=
−2⌋∑

9=1

∑
T∈T9

���`GD
),f,b

(
f0(48+1) = 148+1 ∧ rTS((,0) = ⊥TS((,0) ∧ T bad = T

)���

= lim
)→∞

⌊ )
2=
−2⌋∑

9=1

∑
T∈T9

∑
C∈T−1 (T)

���`GD
),f,b

(
Cbad = C ∧ rTS((,0) = ⊥TS((,0)

)

·`GD
),f,b

(
f0(48+1) = 148+1 | Cbad = C ∧ rTS((,0) = ⊥TS((,0)

)��� .
Recall the zero-one law stated in (8). For any finite 2-treeT that includes TS((, 0) = TS(48+1, 0) and sat-
isfies |T | ≤ )

2=
− 2, the conditional measure `GD

),f,b

(
f0(48+1) = 148+1 | Cbad = C ∧ rTS((,0) = ⊥TS((,0) )

evaluates to either 0 or 1 for each C ∈ T−1(T ), provided it is well-defined. �en, we have

lim
)→∞

⌊ )
2=
−2⌋∑

9=1

∑
T∈T9

∑
C∈T−1 (T )

���`GD
),f,b

(
Cbad = C ∧ rTS((,0) = ⊥TS((,0)

)

·`GD
),f,b

(
f0(48+1) = 148+1 | Cbad = C ∧ rTS((,0) = ⊥TS((,0)

)���
(by (8)) ≤ lim

)→∞

⌊ )
2=
−2⌋∑

9=1

∑
T∈T9

∑
C∈T−1 (T )

���`GD
),f,b

(
Cbad = C ∧ rTS((,0) = ⊥TS((,0)

)���

(Lemma 4.9) ≤ lim
)→∞

⌊ )
2=
−2⌋∑

9=1

∑
T∈T9

U 9

(Lemma 4.10) ≤
∑
9≥1
(4eΔ2:4) 9−1 · U 9

(by (7)) <1,

where the second-to-last inequality additionally uses that : upper bounds all |48 |. �en, by combining
with (17), both (15) and the lemma are proved. �

5. Decay of complex measures in percolation

In this section, we prove a series of percolation properties (Lemmas 4.7, 4.9 and 4.11) assumed in
the previous section, which controls the contributions of bad trees to the marginal measure. From the
perspective of information percolation, these lemmas establish a decay of percolation.

At a high level, we split the contributions to the marginal measure into those coming from small
bad trees and those coming from large bad trees. We show that small bad trees characterize witness
sequences; therefore, they correspond to “oblivious updates” that factorize the measure and do not
depend on the initial measure. �en, we bound the contributions to the marginal measures coming
from small bad trees. Finally, we show that those contributions coming from large bad trees go to zero
as ) → ∞. Combined, this gives us a bound on the marginal measure through much simpler product
measures on the witness graph.
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5.1. Small bad trees characterize witness sequences. We first prove the characterization property
for small bad trees as in Lemma 4.7.

Proof of Lemma 4.7. By the definition of predD (C) and �(
�
, and the nature of the systematic scan, we

have for each E ∈ +(
�
,

max{C : C ∈ E} −min{C : C ∈ E} ≤ =.(18)

Note that according to the definition of T bad (1) in Definition 4.6, we have T bad (1) is connected
in the square graph of �(

�
. So, if we have |T bad (1) | ≤ )/(2=) − 2 then it holds that C ≥ −) + 1 + 2=

for all C ∈ E, E ∈ T bad (1). Furthermore, by Definition 4.6, C ≥ −) + 1 + 2= for all C ∈ E, E ∈ T bad (1)
implies that C ≥ −) − 1 + = for all C ∈ E, E ∈ Cbad (1). To see this, first observe that each E ∈ Cbad (1)
must share timestamps with some E ∈ T bad (1) in �(

�
, according to the construction in Definition 2.2.

�en we apply (18).
Next, we claim that, with C ≥ −) +1+= for all C ∈ E, E ∈ Cbad (1), we can deduce the result of update

at each timestamp C ∈ BadTS (1) , ⋃
B∈Cbad (1)

B. �en the lemma directly follows from this claim, as

the updates alone can completely determine the event �.
We then prove the claim. By Algorithm 3, given some timestamp C, AC = 0 or ⊥ due to the b-

decomposition scheme specified in (6). If AC = 0, then fC (E8 (C ) ) is updated to 0 at time C; otherwise
AC = ⊥, and fC (E8 (C ) ) is updated to 0 if and only if the following event occurs:

(19) ∃4 ∈ E s.t. E8 (C ) ∈ 4 : ∀D ∈ 4 \ {E8 (C ) }, fC (D) = 1,

meaning that the value of all the vertices in 4 \ {E8 (C ) } got updated to 1 at their last updates.
We argue that it suffices to check the event in (19) for the hyperedges 4 such that TS(4, C) ∈ Cbad (1).

We note that when C ≥ −) + 1 + = and C ∈ BadTS (1), an edge 4′ such that E8 (C ) ∈ 4′ and TS(4′, C) ∉
Cbad (1) means there exists C′ ∈ TS(4′, C) such that AC ′ = 0, which means fC (E8 (C ′ )) = fC ′ (E8 (C ′ ) ) = 0.
�erefore, this edge 4′ does not satisfy (19) as one of its vertices is already assigned 0.

�en, to check the event in (19), we notice that we only need values of fC (E8 (C ) ) for C ∈ BadTS (1).
Because for any edge 4′ that involves values at C ∉ BadTS (1), we have TS(4′, C) ∉ Cbad (1), and by
the same argument as above, 4′ does not satisfy (19).

�erefore, we can deduce the result of updates at each C ∈ BadTS (1) in chronological order. �

5.2. Bounding complex measures for small bad trees. Next, we establish the exponential decay
of the total measure stated in Lemma 4.9 for each bad tree.

Proof of Lemma 4.9. According to the deterministic process in Definition 2.2 for the construction of
the 2-tree T bad = T(Cbad), all C ∈ T−1(T bad) must only contain vertices in �(

�
that are within

distance 1 of T bad, and to determine Cbad it is sufficient to check for all vertices in �(
�
that are within

distance 2 of T bad whether they are in +bad or not. �erefore, we can bound the le�-hand side in (9)
by translating to the following condition on r:

(1) for each B ∈ T , we have AC = ⊥ for all C ∈ B;
(2) ACs on all other vertices in+(

�
that are within distance 2 of T satisfy certain restrictions so that

Cbad ∈ T−1(T ).
Here, the Item 1 contributes a factor of

∏
C∈B:B∈T

�����
_E8 (C )

1 + _E8 (C )

����� ≤ # | T | ,
by the definition of 2-trees that all vertices in T contain disjoint timestamps. We can use a simple

triangle inequality to bound Item 2. By Lemma 4.5, the maximum degree of
(
�(

�

)2
is 4Δ2:4, where(

�(
�

)2
is the square graph of�(

�
. For vertices in T , the number of their neighboring vertices in

(
�(

�

)2
can be upper bounded by 4Δ2:4. �erefore, there are at most 4Δ2:5 timestamps. And each timestamp
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C contributes at most

���� 1
1+_E8 (C )

���� +
���� _E8 (C )
1+_E8 (C )

���� ≤ " by a triangle inequality. So Item 2 contributes a factor

of at most "4Δ2:5 | T | . To summarize, we have���`GD
),f,b

(
Cbad ∈ T−1(T ) ∧ rTS((,0) = ⊥TS((,0)

)��� ≤ # | T | · "4Δ2:5 | T | ≤ U | T | . �

5.3. Decay of large bad trees. Finally, we prove Lemma 4.11, which asserts that large bad trees have
diminishing contributions. Our approach follows a similar framework to the one used for bounding the
contributions of small bad trees (Lemmas 4.7 and 4.9). A key technical distinction here is that when the
bad tree is large, the outcome may no longer be determined solely by the bad component. To address
this, we show that in such cases, the information from the initial configuration, the bad component,
and the AC values for the first = timestamps are sufficient to serve as a certificate of the outcome.

Fix ) ≥ =. Let � = [−) + 1,−) + =]. Let r� = (AC)−)+=C=−)+1 ∈ {0,⊥}� denote the first = timestamps of r.
We first show a counterpart of Lemma 4.7-(2) for large bad trees.

Lemma 5.1. Fix any ) ≥ = and any event � ⊆ {0, 1}+ . Consider the witness graph �(
�

=
(
+(
�
, �(

�

)
constructed using the set of variables ( = vbl(�). Let 1 = (dC )0C=−)+1 ∈ {0,⊥}) .

�en, for any initial configurationf ∈ supp(`), the occurrence of � at time 0 is determined byCbad (1),
1� and 1TS((,0) .

Remark 5.2. As in Lemma 4.7-(2), Lemma 5.1 also implies the following “zero-one law” for themeasure
of an event �:

(20) `GD
),f,b

(
f0 ∈ � | Cbad (r) = Cbad (1) ∧ r� = 1� ∧ rTS((,0) = 1TS((,0)

)
∈ {0, 1},

provided the conditional measure is well-defined, i.e., the following event has non-zero measure:

Cbad (r) = Cbad (1) ∧ r� = 1� ∧ rTS((,0) = 1TS((,0) .

Proof of Lemma 5.1. Let BadTS (1) , ⋃
B∈Cbad (1)

B. Conditioning on Cbad (r) = Cbad (1) ∧ r� = 1� , we

know that for all C ∈ BadTS (1) that C ≤ −) + =, it holds that AC = 1� (C).
If C ≥ −) + = + 1 for all C ∈ BadTS (1), then we can determine f0 by Cbad (1) following the proof of

Lemma 4.7-(2). Otherwise, we claim that, given 1� , we can still deduce the result of the update at each
timestamp C ∈ BadTS (1). �en, the lemma directly follows from this claim, as the updates alone can
completely determine f0.

We then prove the claim. By Algorithm 3, given some timestamp C, AC = 0 or ⊥ due to the b-
decomposition scheme specified in (6). If AC = 0, then fC (E8 (C ) ) is updated to 0 at time C; otherwise
AC = ⊥, and fC (E8 (C ) ) is updated to 0 if and only if the following event occurs:

(21) ∃4 ∈ E s.t. E8 (C ) ∈ 4 : ∀D ∈ 4 \ {E8 (C ) }, fC (D) = 1,

meaning that the value of all the vertices in 4 \ {E8 (C ) } got updated to 1 at their last updates.
Fix a specific C ∈ BadTS (1),
• For C ≥ −) + 1 + =, if AC = 0 then fC (E8 (C ) ) = 0, otherwise AC = ⊥, we argue that it suffices to

check the event in (21) for the hyperedges 4 such that TS(4, C) ∈ Cbad (1). We note that when
C ≥ −) +1+= and C ∈ BadTS (1), an edge 4′ such that E8 (C ) ∈ 4′ and TS(4′, C) ∉ Cbad (1) means
there exists C′ ∈ TS(4′, C) such that AC ′ = 0, which means fC (E8 (C ′ ) ) = fC ′ (E8 (C ′ ) ) = 0. �erefore,
this edge 4′ does not satisfy (21) as one of its vertices is already assigned 0,
• For C ≤ −) + =, all events in (21) can be determined from 1� and the initial configuration f.

�erefore, we can deduce the result of the updates at each C ∈ BadTS (1) in chronological order. �

We also have the following lemma that serves as a counterpart of Lemma 4.9.

Lemma 5.3. Fix any ( ⊆ + and ) ≥ =. Consider the witness graph �(
�
, the bad component Cbad =

Cbad (r), and the bad tree T bad = T bad (r) = T(Cbad) , where r = (AC )0C=−)+1 ∈ {0,⊥}) is constructed

as in Algorithm 3, following the product measure in (6).
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�en, for any f ∈ supp(`), for any 2-tree T in �(
�
containing TS((, 0), we have

(22)∑
C∈T−1 (T)

∑
1� ∈{0,⊥}�

1TS ((,0) ∈{0,⊥}TS ((,0)

���`GD
),f,b

(
Cbad = C ∧ r� = 1� ∧ rTS((,0) = 1TS((,0)

)��� ≤ U | T |−1 ·"4Δ2:4 |( |+=.

Proof. According to the deterministic process in Definition 2.2 for the construction of the 2-treeT bad =

T(Cbad), all C ∈ T−1(T bad) must only contain vertices in �(
�

within distance 1 of T bad, and to

determine Cbad it is sufficient to check for all vertices in �(
�
within distance 2 of T bad whether they

are in +bad or not. �us, we bound the le�-hand side in (22) with the following condition on r:

(1) for each B ∈ T \ TS((, 0), we have AC = ⊥ for all C ∈ B;
(2) AC = 1� (C) for each C ∈ �;
(3) AC = 1TS((,0) (C) for each C ∈ TS((, 0);
(4) AC ’s on vertices within distance 2 of T satisfy certain restrictions so that Cbad ∈ T−1(T ).
Here, the Item 1 contributes a factor of∏

C∈B:B∈T\TS((,0)

�����
_E8 (C )

1 + _E8 (C )

����� ≤ # | T |−1,
by the definition of 2-trees that all vertices in T contain disjoint timestamps. By Lemma 4.5, the

degree of TS((, 0) in
(
�(

�

)2
can be upper bounded by 4Δ2:3 |( |, where

(
�(

�

)2
is the square graph of

�(
�
. For vertices other than TS((, 0), the number of their neighboring vertices in

(
�(

�

)2
, excluding

those already adjacent to TS((, 0), can be upper bounded by 4Δ2:4. �erefore, there are at most
4Δ2:4 ( |T | − 1) + 4Δ2:3 |( | vertices and at most 4Δ2:5 ( |T | − 1) + 4Δ2:4 |( | timestamps included. And

each timestamp C contributes at most

���� 1
1+_E8 (C )

����+
���� _E8 (C )
1+_E8 (C )

���� ≤ " by a simple triangle inequality. So Items 2

to 4 together contribute a factor of at most

"4Δ2:5 ( | T |−1)+4Δ2:4 |( |+=.

Summarizing, we have∑
C∈T−1 (T)

∑
1� ∈{0,⊥}�

1TS ((,0) ∈{0,⊥}TS ((,0)

���`GD
),f,b

(
Cbad = C ∧ r� = 1� ∧ rTS((,0) = 1TS((,0)

)���

≤ # | T |−1 · "4Δ2:5 ( | T |−1)+4Δ2:4 |( |+=

≤ U | T |−1 · "4Δ2:4 |( |+=. �

We are now ready to prove Lemma 4.11.

Proof of Lemma 4.11. For each 8 ≥ 1, let T8 denote the set of 2-trees of size 8 in �(
�
containing TS((, 0).

Recall the definition of the bad component Cbad = Cbad (r) in Definition 4.6 and T as the construction
in Definition 2.2 such that T(Cbad) = T bad.
(23)

lim
)→∞

���`GD
),f,b

(
f0 = g ∧ |T bad | > )/(2=) − 2

)���
≤ lim

)→∞

∑
8>)/(2=)−2

∑
T∈T8

∑
C∈T−1 (T )

∑
1� ∈{0,⊥}�

1TS((,0) ∈{0,⊥}TS ((,0)

���`GD
),f,b (f0 = g | Cbad = C ∧ r� = 1� ∧ rTS((,0) = 1TS((,0) )

���

·
���`GD

),f,b (C
bad = C ∧ r� = 1� ∧ rTS((,0) = 1TS((,0) )

���
≤ lim

)→∞

∑
8>)/(2=)−2

∑
T∈T8

∑
C∈T−1 (T )

∑
1� ∈{0,⊥}�

1TS((,0) ∈{0,⊥}TS ((,0)

���`GD
),f,b (C

bad = C ∧ r� = 1� ∧ rTS((,0) = 1TS((,0) )
��� ,
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where the last inequality is due to Lemma 5.1 and the zero-one law stated in (20). Specifically, the
zero-one law ensures that `GD

),f,b
(f0 = g | Cbad = C ∧ r� = 1� ∧ rTS((,0) = 1TS((,0) ) evaluates to

either 0 or 1, provided the conditional measure is well-defined. Recall the definition of U and " in
Definition 4.2. �en le�ing �1 = 4Δ2:4 and �2 = 4Δ2:3 |( |,

lim
)→∞

���`GD
),f,b

(
f0 = g ∧ |T bad | > )/(2=) − 2

)���
(by (23) and Lemma 5.3) ≤ lim

)→∞

∑
8>)/(2=)−2

∑
T∈T8

U8−1 · "4Δ2:4=+=

(by Lemma 4.10) ≤ lim
)→∞

∑
8>)/(2=)−2

(e(�2 + 8 − 2))�2−1 · (e�1)8−1 · U8−1 · "4Δ2:4=+=

(by (7)) ≤ lim
)→∞

∑
8>)/(2=)−2

(e(�2 + 8 − 2))�2−1 · "4Δ2:4=+= 1

28−1

(by taking limit) =0. �

6. Reduction from Fisher zeros to Lee-Yang zeros

In this section, we prove�eorem 1.3, which addresses the Fisher zeros of hypergraph independence
polynomials. To achieve this, we introduce the following reduction from the independence polynomial
parameterized by edge strengths to that parameterized by vertex weights. �e resulting parameters
are beyond the zero-free region that we have proved in �eorem 1.1, but we are able to verify the key
condition (7) as required in the inductive step Lemma 4.3, and still carry out the induction.

Definition 6.1 (reduction from Fisher zeros to Lee-Yang zeros). Given a hypergraph � = (+, E) and
# = (V4)4∈E ∈ CE for each 4 ∈ E , we deterministically construct a hypergraph �′ = (+ ′, E′) and a
complex vector , = (_E)E∈+ ′ ∈ C+

′
, denoted by (�′, ,) = red(�, #), as follows:

• + ′ = + ∪ {E4 | 4 ∈ E s.t. V4 ≠ 0}, E′ = {4 | 4 ∈ E s.t. V4 = 0} ∪ {4 ∪ E4 | 4 ∈ E s.t. V4 ≠ 0};

• _E =
{
1 E ∈ +
1−V4
V4

E = E4 for some 4 ∈ E s.t. V4 ≠ 0

�e following lemma establishes the desirable properties of the reduction in Definition 6.1.

Lemma 6.2 (property of the reduction). Let � = (+, E) be a hypergraph with a maximum degree Δ ≥ 1

and a maximum edge size : and let (�′, ,) = red(�, #). �en,

(1) �′ has a maximum degree Δ and a maximum edge size at most : + 1;
(2) the partition functions /

ly

� ′ (,) and = / fs
�
(#) satisfy:

/
ly

� ′ (,) = /
fs
� (#) ·

∏
4∈E:V4≠0

V−14 .

Proof. Item 1 follows straightforwardly from the reduction in Definition 6.1. We then prove Item 2. Let

+∗ = + ′ \+ = {E4 | 4 ∈ E s.t. V4 ≠ 0} and E∗ = E′ \ E = {4 ∪ E4 | 4 ∈ E s.t. V4 ≠ 0}.

For any logical expression %, we define the Iverson bracket [%] = 1 if % is true, otherwise [%] = 0.
Recall I(�′) ⊆ {0, 1}+ ′ denotes the set of all independent sets in �′.

�e partition function / fs
�
(#) on � with edge strengths # can be expressed as:

/ fs
� (#) =

∑
f∈{0,1}+

∏
4∈E
(V4 [f (4) = 14] + [f (4) ≠ 14]).
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Meanwhile, the partition function /
ly

� ′ (,) on �′ with vertex weights , can be expressed as:

/
ly

� ′ (,) =
∑

f∈I(� ′ )

∏
E:f (E)=1

_E

=
∑

f∈{0,1}+′

∏
E∈+ ′:f (E)=1

_E

∏
4∈E′
[f (4) ≠ 14]

=
∑

f∈{0,1}+

∏
E∈+ :f (E)=1

_E

∏
4∈E:V4≠0

(1/V4 [f (4) ≠ 14] + [f (4) = 14])
∏

4∈E:V4=0
[f (4) ≠ 14](24)

=
∏

4∈E:V4≠0
V−14 ·

∑
f∈{0,1}+

∏
4∈E:V4≠0

([f (4) ≠ 14] + V4 [f (4) = 14])
∏

4∈E:V4=0
[f (4) ≠ 14]

=/ fs
� (#) ·

∏
4∈E:V4≠0

V−14 ,

where the equality in (24) follows from Definition 6.1. �

Let (�′, ,) = red(�, #). Note that according to Lemma 6.2-(2), we have /
ly

� ′ (,) ≠ 0 if and only if

/ fs
�
(#) ≠ 0. We then prove that /

ly

� ′ (,) ≠ 0. Note that the condition in �eorem 1.3 together with
Definition 6.1 implies _E ≠ −1 for each E ∈ + ′. It suffices to verify that the condition in �eorem 1.3
implies (7) for the instance (�′, ,), then�eorem 1.3 directly follows from Lemma 4.3-(2) and the same
edge-wise self-reduction as in the proof of �eorem 1.1.

Now we bound the quantity # = # (�′, ,) in Definition 4.2. By definition of # and the reduction
constructed in Definition 6.1, it holds that

# ≤ min
©­«
(
1

2

):
,

(
1

2

) :
max
V≠0

V∈DY

���� (1 − V)/V1 + (1 − V)/V

����ª®¬
≤ 2−: max

V≠0
V∈DY

|1 − V | .

By the condition of �eorem 1.3, we have

# ≤ 2−: max
V≠0

V∈DY

|1 − V | ≤ (1 + 2Y)2−: ≤
(
2
√
2eΔ(: + 1)

)−2
.

Next, we bound the quantity " = " (�′, ,) in Definition 4.2. By the definition of " and the
reduction constructed in Definition 6.1, it holds that

" ≤ max
©­«
1

2
+ 1

2
, max

V≠0
V∈DY

(���� 1

1 + (1 − V)/V

���� +
���� (1 − V)/V1 + (1 − V)/V

����
)ª®¬
≤ max

V≠0
V∈DY

( |V | + |1 − V |).

By the condition of �eorem 1.3, we have

" ≤ max
V≠0

V∈DY

( |V | + |1 − V |) ≤ 1 + 4Y.

Recall the quantity U = U(�′, ,) in Definition 4.2. We have

8eΔ2 (: + 1)4 · U(�′, ,)

≤8eΔ2 (: + 1)4
(
2
√
2eΔ(: + 1)2

)−2
(1 + 4Y)4Δ2 (:+1)5

≤e−1 exp
(
16YΔ2 (: + 1)5

)
<1.

�is establishes the condition in (7) for the instance (�′, ,). As discussed above, it proves �eorem 1.3.
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Appendix A. A central limit theorem for hypergraph independent sets

In this section, we establish a central limit theorem (CLT) for hypergraph independent sets, using our
new zero-free region for hypergraph independence polynomials (namely, �eorem 1.1). Specifically,
we will prove �eorem 1.5.

�e toolwe use is the following relation between zero-free regions and central limit theorems, which
is also the starting point in [JPSS22, DP23] for establishing CLTs.

Lemma A.1 ([MS19, �eorem 1.2]). Let - ∈ {0, . . . , =} be a random variable with mean ¯̀, standard

deviation f and probability generating function 5 and set -∗ = (- − ¯̀)f−1. For X ∈ (0, 1) such that

|1 − Z | ≥ X for all roots Z of 5 ,

sup
C∈R
|P[-∗ ≤ C] − P[Z ≤ C] | ≤ $

(
log =

Xf

)
,

whereZ ∼ # (0, 1) is a standard Gaussian random variable.

A.1. Central limit theorem. In this subsection, we prove a multivariate version of the first part of
�eorem 1.5.

�eorem A.2 (first part of �eorem 1.5). Fix : ≥ 2, Δ ≥ 3. Let � = (+, E) be a :-uniform hypergraph

with maximum degree Δ. Let = = |+ | . Fix any X > 0, Y ∈
(
0, 1

9:5Δ2

)
. Let _2,Y be defined as in�eorem 1.1.

For any , ∈ (X, _2,Y]+ , let � ∼ `�,, , and define - = |� |, ¯̀ = E[-] and f2 = Var[-]. �en we have

sup
C∈R
|P[(- − ¯̀)/f ≤ C] − P[Z ≤ C] | = $:,Δ, X,Y

(
log =
√
=

)
,

whereZ ∼ # (0, 1) is a standard Gaussian random variable.

We need to lower bound the variance of - = |� |, the size of a random independent set following the
Gibbs measure. �e following bound is a generalization of [JPSS22, Lemma 3.2] to hypergraphs and
with vertex-dependent external fields.

Lemma A.3. Let _min = minE∈+ _E and _max = maxE∈+ _E . Under the condition of �eorem A.2, we
have

Ω:,Δ,Y (_min=) ≤ Var[-] ≤ $:,Δ,Y (_max=).

Proof. We first show that Var[-] = $:,Δ,Y (_max=). We consider the generating polynomial of - :

5 (G) =
∑

f∈I(� )

∏
E:f (E)=1

(_E · G).

We have

ln( 5 (G))′ |G=1 =
5 ′ (1)
5 (1) = E[-], ln( 5 (G))′′ |G=1 =

5 (1) 5 ′′ (1) − ( 5 ′ (1))2
( 5 (1))2 = E[-2]−E[-]− (E[-])2,

and therefore

Var[-] = ln( 5 (G))′′ |G=1 + ln( 5 (G))′ |G=1 .
Note that the degree of 5 is equal to # , the size of the maximum independent set in �, and that

5 (0) = 1. By the fundamental theorem of algebra, we can write 5 (G) as,

5 (G) =
#∏
9=1

(1 − A 9G),

where A1, A2, . . . , A# be the inverses of the complex roots of 5 (G). �en we have that,

Var[-] = (ln( 5 (G)))′′ |G=1 + ln( 5 (G))′ |G=1

=

#∑
9=1

A 9

(1 − A 9)2
.
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To upper bound Var[-], it suffices to bound max
1≤ 9≤#

��� A 9

(1−A 9 )2

���. Note that 5 (G) = /
ly

�
(, · G). �erefore,

according to �eorem 1.1, 5 (G) is zero-free on � = {G | G ∈ C, |G − 1| ≤ Y/(
√
2_max)}. Let �2 = C\�.

With the zero-free region for 5 (G), we show that,

max
1≤ 9≤#

���� A 9

(1 − A 9)2

���� ≤ max
G∈�2

|G |
|G − 1|2

≤ max
G∈�2

(
1

|G − 1| +
1

|G − 1|2

)
≤
√
2_maxY

−1 + 2_2maxY
−2.

Note _max ≤ _2,Y = $:,Δ,Y (1). So it holds that

Var[-] ≤ (
√
2_maxY

−1 + 2_2maxY
−2)# = $:,Δ,Y (_max=).

Next, we show Var[-] = Ω:,Δ,Y (_min=). Let � ⊆ + be a maximum hypergraph matching, that is, a
subset of vertices satisfying

(25) ∀4 ∈ E, |� ∩ 4 | ≤ 1,

with maximum size. We write |� | = " .
We additionally let  = � \ �. Note that - = | | + |� ∩ � |, and according to (25), conditioned on  

the set � ∩ � is distributed according to the hypergraph independent set on

* = � \ {E ∈ � | ∃4 ∈ E s.t. 4 ⊆  ∪ {E}},

which is the distribution each vertex E ∈ * independently taking 1 with probability _E

1+_E
and taking 0

with probability 1
1+_E

. �erefore,

Var[- | *] =
∑
E∈*

_E

(1 + _E)2
.

By the law of total variance,

Var[-] = E[Var[- | *]] + Var[E[- | *]] ≥ E[Var[- | *]] =
∑
E∈�

(
_E

(1 + _E)2
· P[E ∈ *]

)
.

By the condition that _E ∈ [_min, _max], we further have

Var[-] ≥
∑
E∈�

(
_E

(1 + _E)2
· P[E ∈ *]

)
≥ 1

1 + _2,Y
· _min

1 + _min

∑
E∈�
P[E ∈ *] = Ω:,Δ,Y (_min) · E[|* |].

Note that vertex E ∈ � is not in * precisely when there exists some 4 ∈ E such that D ∈ 4 and
4 ⊆  ∪ {E}. Note further that under the distribution of random independent sets of � with fugacity
_, the probability of each vertex E being occupied is at most

_E

1 + _E
≤ _2,Y

1 + _2,Y
,

under any conditioning on the value of other vertices. �is means that

E[|* |] ≥ |� |
(
1 − Δ ·

(
_2,Y

1 + _2,Y

):−1)
=

(
1 − Δ ·

(
_2,Y

1 + _2,Y

) :−1)
" >

(
1 − 1

8e2Δ:4

)
",

where the last inequality is from the condition in �eorem A.2. Hence,

Var[-] > Ω:,Δ,Y (_min) ·
(
1 − 1

8e2Δ:4

)
" = Ω:,Δ,Y (_min) ·

(
1 − 1

8e2Δ:4

)
".

Now, it remains to notice thatwe can bound" ≥ =
(:−1)Δ+1 from the following greedy process of con-

structing a � satisfying (25): each time pick an arbitrary remaining vertex and remove all hyperedges
containing it together with all vertices inside them. �

Now we can prove �eorem A.2.
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Proof of �eorem A.2. Let 5 denote the generating polynomial of - , which is

5 (G) =
∑

f∈I(� )

∏
E:f (E)=1

(_E · G) .

Note that 5 (G) = /
ly

�
(, · G). Let 6(G) = 5 (G)/ 5 (1) be its probability generating function. �erefore,

according to �eorem 1.1, 6(G) is zero-free on � = {G | G ∈ C, |G − 1| ≤ Y/(
√
2_2,Y)}. Also, note for

any _E , it holds that _E > X. Hence, �eorem A.2 follows directly from Lemmas A.1 and A.3. �

A.2. Local central limit theorem. In this subsection, we prove a local central limit theorem for
hypergraph independent polynomials, which is the second part of �eorem 1.5.

�eorem A.4 (second part of �eorem 1.5). Fix : ≥ 2 and Δ ≥ 3. Let � = (+, E) be a :-uniform
hypergraph with maximum degree Δ. Let = = |+ |. Fix any X > 0, Y ∈

(
0, 1

9:5Δ2

)
. Let _2,Y be defined as

in �eorem 1.1. For any _ ∈ (0, _2,Y], let � ∼ `�,, , and define - = |� |, ¯̀ = E[-] and f2 = Var[-]. Let
N(G) = e−G

2/2/
√
2c denote the density of the standard normal distribution, we have

sup
C∈Z

��P[- = C] − f−1N((C − ¯̀)/f)
�� = $:,Δ,Y

(
min

(
(log =)5/2

f2
,
1

f2
+ f

2: (log =)2
=:−1

))
.

In [JPSS22], they use the following standard lemma from [Ber16], which quantifies a local central
limit theorem via approximations to characteristic functions.

Lemma A.5 ([Ber16, Lemma 3]). Let - be a random variable supported on the la�ice L = U + VZ and

let N(G) = e−G
2/2/
√
2c denote the density of the standard normal distribution. �en

sup
G∈L
|VN(G) − P[- = G] | ≤ V

∫ c/V

−c/V

���E [
e8C-

]
− E

[
e8CZ

] ��� 3C + e−c2/(2V2 ) ,

whereZ ∼ # (0, 1) is a standard Gaussian random variable.

�en they prove that the high Fourier phases of the characteristic function,
��E [

e8C-
] �� with large C’s,

are negligible via a combinatorial argument for the independent set polynomial in [DT77]. And for low
Fourier phases,

��E [
e8C-

] ��with small C’s, they use the central limit theorem to bound
��E [

e8C-
]
− E

[
e8CZ

] ��.
We follow the high-level idea in [JPSS22]. For high Fourier phases, we show that they are negligible

in Lemma A.9, and the main distinction is an analogous combinatorial argument for hypergraph inde-
pendent sets (LemmaA.8). For low Fourier phases, we again use the central limit theorem (LemmaA.7).

Before bounding the characteristic functions, we first bound the variance. From Lemma A.3, we
directly obtain the following bound for the univariate hypergraph independent set polynomial.

Corollary A.6. Let � = (+, E) be a :-uniform hypergraph with maximum degree Δ. Let = = |+ |. Fix
any Y ∈

(
0, 1

9:5Δ2

)
. Let _2,Y be defined as in �eorem 1.1. For any _ ∈ (0, _2,Y], let � ∼ `�,_, and define

- = |� |. We have

Var[-] = Θ:,Δ,Y (_=).
�e next lemma bounds the low Fourier phases by the central limit theorem.

Lemma A.7. Fix : ≥ 2 and Δ ≥ 3. Let � = (+, E) be a :-uniform hypergraph with maximum degree

Δ. Let = = |+ |. Fix any Y ∈
(
0, 1

9:5Δ2

)
, let _2,Y be defined as in �eorem 1.1. For any _ ∈ (0, _2,Y], let

� ∼ `�,_, and define - = |� |, ¯̀ = E[-] and f2 = Var[-]. Let . = (- − ¯̀)/f, Z ∼ # (0, 1) be a
standard Gaussian random variable. For any C ∈ R, we have that���E [

e8C.
]
− E

[
e8CZ

]��� = $:,Δ,Y

(
|C | (log =)3/2 + log =

f

)
.

Proof. We first recall the central limit theorem for . . By Lemma A.1, we have that

sup
C∈R
|P[. ≤ C] − P[Z ≤ C] | ≤ $:,Δ,Y

(
log =

f

)
.(26)
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Next, we express the E
[
e8C.

]
into an integration. Let. ′ be. convolved with a centered Gaussian of

infinitesimally small variance so that . ′ has a density function with respect to the Lebesgue measure
on R; it suffices to consider . ′ and then pass to the limit. We have that,

E

[
e8C.

′
]
=

∫ ∞

−∞
e8C I ?. ′ (I) 3I

=

∫
|I | ≤g

e8C I ?. ′ (I) 3I ± e8\
′
P[|. ′ | ≥ g]

=

[
e8C I

(∫ I

−g
?. ′ (I′) 3I′

)] I=g
I=−g
−

∫ g

−g
8Ce8C I

(∫ I

−g
?. ′ (I′) 3I′

)
3I ± e8\′P[|. ′ | ≥ g]

=e8C g −
∫ g

−g
8Ce8C IP[. ′ ∈ [−g, I]] 3I ± e8\′P[|. ′ | ≥ g] − e8C gP[|. ′ | ≥ g]

(by (26)) =e8C g −
∫ g

−g
8Ce8C IP[. ′ ∈ [−g, I]] 3I + e8\ · $:,Δ,Y

(
log =

f
+ e−g2/4

)
,

for some \′, \ ∈ [0, 2c). �en we apply the same calculation to Z instead of . ′ and taking the differ-
ence, we find that���E [

e8C.
′
]
− E

[
e8CZ

]��� ≤ |C |
����
∫ g

−g
|P[. ′ ∈ [−g, I]] − P[Z ∈ [−g, I]] | 3I

���� +$:,Δ,Y

(
log =

f
+ e−g2/4

)

≤ $:,Δ,Y

(
( |gC | + 1) log =

f
+ e−g2/4

)
.

By Corollary A.6, se�ing g =
√
8 log = gives the desired conclusion. �

�en, we bound the high Fourier phases following a similar strategy as in [DT77, JPSS22].

Lemma A.8 (hypergraph version of [JPSS22, Lemma 3.4]). Fix : ≥ 2, Δ ≥ 3. Let � = (+, E) be a
:-uniform hypergraph with maximum degree Δ. Let = = |+ |. �en, there exists a subset ( ⊆ + of size

Ω(=/(Δ:)3) such that all vertices in ( have pairwise distance at least 4 with respect to the hypergraph

distance. Moreover, there is an algorithm to find such a subset ( in time $Δ,: (=).

Proof. Let E1, E2, . . . , E= donate an arbitrary enumeration of the vertices. Initialize ( = ∅. Consider
the greedy algorithm which, at each time step, adds the first variable vertex to the set ( and removes
all vertices within distance 3 of this vertex from consideration. �e algorithm stops when there are
no more available vertices. �e algorithm runs in time $Δ,: (=) and outputs a set ( such that any

two vertices in ( have graph distance at least 4. Moreover, since at each time, $ ((Δ:)3) vertices are
removed, it follows that |( | = Ω(=/(Δ:)3). �

Lemma A.9 (hypergraph version of [JPSS22, Lemma 3.5]). Fix : ≥ 2, Δ ≥ 3. Let � = (+, E) be a :-
uniform hypergraph with maximum degree Δ. Let = = |+ |. Fix any Y ∈

(
0, 1

9:5Δ2

)
. Let _2,Y be defined as

in �eorem 1.1. For any _ ∈ (0, _2,Y], there exists a constant 2 = 2:,Δ,Y > 0 satisfying the following. Let

� ∼ `�,_, - = |� | and define ¯̀ = E[-], f2 = Var[-]. Let . = (- − ¯̀)/f. �en, for all C ∈ [−cf, cf],
we have ��E [

e−8C.
] �� ≤ exp

(
−2_=C2/f2

)
.

Proof. It suffices to show that for all C ∈ R, |C | ≤ c,��E [
e−8C-

] �� ≤ exp
(
−2_=C2

)
.

Let ( be a 4-separated set of vertices of � of size B = Ω(=/(Δ:)3) from Lemma A.8. Let ) be the set
of vertices that are at distance at least 2 from ( in � and let � [) ] denote the graph on � induced by
) . Let Z denote the distribution on � [) ] induced by the Gibbs distribution `�,_. We sample � by first
sampling � ∼ Z and then sampling from the conditional distribution (induced by the Gibbs distribution
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`�,_ and �) on � [E∪# (E)] for each E ∈ (. �e key observation is that these conditional distributions
are mutually independent. In particular, given �, we can write,

- = |� | + -1 + -2 + · · · + -B,

where each - 9 is an independent random variable with support in 0, 1, . . . , :Δ. We claim that for all
|C | ≤ c and all 9 ∈ [B], for any realization of �,��E [

e−8C- 9
] �� ≤ 1 − 2′_C2,

for some absolute 2′ = 2′
:,Δ,Y

> 0. For any realization of �, le�ing - ′9 denote an independent copy of

- 9 , we have��E [
e−8C- 9

] ��2 =E [
e
8C (- 9 −-′9 )

]

=P[- 9 = -
′
9] +

:Δ∑
:=1

(
P[- 9 − - ′9 = :] + P[- ′9 − - 9 = :]

)
cos(:C)

≤P[- 9 = -
′
9] +

:Δ∑
:=2

(
P[- 9 − - ′9 = :] + P[- ′9 − - 9 = :]

)
+ 2P[- 9 − - ′9 = 1] cos(C)

=1 − 2P[- 9 − - ′9 = 1] (1 − cos(C))

≤1 − 1

4
P[- 9 − - ′9 = 1]C2

≤1 − 1

4
P[- 9 = 1]P[- ′9 = 0]C2.

Note that for any vertex E in �, under arbitrary configurations of its neighbors, there is at least proba-
bility 1

1+_ such that the configuration of E is 0. So P[- ′9 = 0] ≥ 1
1+_ . For P[- 9 = 1], let E 9 be the vertex

in ( and contributes to - 9 . P[- 9 = 1] is lower bounded by the probability that only the configuration

of E 9 is 1 and for other vertices in # (E 9), their configurations are 0. So P[- 9 = 1] ≥ _
1+_

(
1

1+_
)Δ:

. So
we have that, ��E [

e−8C- 9
] ��2 ≤ 1 − 2′_C2.

Finally, we have that for any C ∈ [−c, c],

E[e−8C-] ≤ max
�

��E[e−8C- | �]�� = max
�

B∏
9=1

��E[e−8C- 9 ]
�� ≤ (1 − 2′_C2)B/2 ≤ exp(−2=_C2),

for an appropriate 2 = 2:,Δ,Y > 0 and the result follows. �

Now we are ready to prove �eorem A.4.

Proof of �eorem A.4. We first show the first part of the inequality. For f ≥ 2, applying Lemma A.5 to
. = (- − ¯̀)/f ∈ U + VZ, where U = − ¯̀/f and V = 1/f. We have that

sup
C∈L
|VN(C) − P[. = C] | ≤ 1

f

∫ cf

−cf

���E [
e8C.

]
− E

[
e8CZ

]��� 3C + e−c2f2/2.

With Lemmas A.7 and A.9, we can bound these two characteristic functions, then we have that,

sup
C∈L
|V# (C) − P[. = C] | .:,Δ,Y

1

f

∫ cf

−cf
min

(
|C | (log =)3/2 + log =

f
, e−2_=C

2/f2 + e−C2/2
)
3C + e−c2f2/2

.:,Δ,Y
1

f

∫ 2′′
√
log f

−2′′
√
log f

|C | (log =)3/2 + log =
f

3C + 1

f2

.:,Δ,Y
(log =)5/2

f2
.
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For the second term, we may assume that 1 ≤ f ≤ log =. Let _′ = _/(1 + _) and observe that the
Gibbs distribution `�,_ is identical to the product distribution Ber(_′)⊗+ conditioned on the config-
uration being an independent set. Here Ber(_′) is the random variable which is 1 (or occupied) with
probability _′ and 0 (or unoccupied) otherwise. A trivial union bound argument shows that a random
sample from Ber(_′)⊗+ is an independent set with probability at least 1 − _′:Δ= = 1 −$:,Δ,Y (_:=) =
1−$:,Δ,Y (f2:/=:−1), where we used Corollary A.6. �erefore, the probability of any configuration un-
der the hypergraph independent set model is within a factor of 1±$:,Δ,Y (f2:/=:−1) of the probability
of the same configuration under Ber(_′)⊗+ .

Let - ′ denote the random variable counting the number of 1’s in a random sample from Ber(_′)⊗+ ,
and let `′ and f′ denote the mean and standard deviation of - ′. �en by the classical DeMoivre-
Laplacian central limit theorem [Pet75], we get that for any integer C,

(27)

����P[- ′ = C] − 1

f′
N

(
C − `′
f′

)���� = $
(
1

f′2

)
.

Let . ′ be the sample drawn from Ber(_′)⊗+ such that - ′ = |. ′ |. From the comparison between the
hypergraph independent set model and Ber(_′)⊗+ mentioned above we have

(28)

P[- = C] =P[-
′ = C ∧. ′ ∈ I(�)]
P[. ′ ∈ I(�)]

=(1 ±$:,Δ,Y (f2:/=:−1))P[- ′ = C ∧ . ′ ∈ I(�)]
=(1 ±$:,Δ,Y (f2:/=:−1)) (P[- ′ = C] −$:,Δ,Y (f2:/=:−1))
=P[- ′ = C] ±$:,Δ,Y (f2:/=:−1).

Note that by the Chernoff bound for the Binomial distribution we have

(29) ` − `′ =(1 ±$ (1/=:))
(1+$: (log =) )`′∑

C=1

C · (P[- = C] − P[- ′ = C])]).

Note that by a similar argument to (28) we have

(30) ∀( ⊆ N, P[- ∈ (] − P[- ′ ∈ (] = ±$:,Δ,Y (f2:/=:−1).
�erefore we have by combining (29) and (30), and that ` ≥ 1:

(31) ` = (1 ±$:,Δ,Y (f2: log =/=:−1))`′.
Note that we can bound the second moment similarly such that

E[-2] − E[(- ′)2] = ±$:,Δ,Y (f2: log2 =/=:−1),
and therefore by f ≥ 1 we have

(32) f2 = (1 ± $:,Δ,Y (f2: log2 =/=:−1)) (f′)2.
Substituting (31) and (32) into (27) yields the desired result. �

Appendix B. Algorithmic implications of local central limit theorem

In this section, we show the algorithmic implication from the local central limit theorem (�eo-
rem A.4). Specifically, we prove �eorem 1.6.

For a hypergraph � = (+, E) and an external field _ with = = |+ |, we define U� (_) , 1
=
E�∼`�,_

[|� |]
to be the occupancy fraction where `�,_ is the Gibbs distribution.

We follow the high-level ideas in [JPSS22]. We first describe their proof. For a graph � = (+, �)
with = = |+ | and an integer C, they first find the appropriate _∗ such that |=U� (_∗) − C | ≤ 1/2. To
see this, they first show that U� (_) is non-decreasing with _, and the derivative of U� (_) is bounded
by the variance. �ey also show the variance is bounded, then they can use a grid search to find
the appropriate _∗. To complete this step, they give an FPTAS to approximate U� (_) by the cluster
expansion and the interpolation method to check whether |=U� (_) − C | < 1/2.
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Let � be a random independent set in � from the Gibbs distribution `�,_. Let - = |� |. From the

local central limit theorem, they show that P[- = C] = Ω

(
1√

Var[-]

)
where Var[-] = Θ(_∗=). So an

FPRAS follows directly from the rapid mixing Glauber dynamics and the rejection sampling. Now, we
consider the FPTAS. Let ¯̀ = E[-], f2 = Var[-], H = (C − ¯̀)/f and . = (- − ¯̀)/f. Let 8C (�) be the
number of hypergraph independent sets in � of size C. It holds that

P[- = C] = P[. = H] = 8C (�) (_
∗)C

/� (_∗)
.(33)

To approximate 8C (�), it suffices to approximate P[. = H] and /� (_∗). [JPSS22] use the polynomial
interpolation to approximate /� (_∗). For P[. = H], they apply the Fourier inversion formula, so it
holds that

P[. = H] = 1

2cf

∫ cf

−cf
E

[
e8C.

]
e−8C H3C.

�en they show that for high Fourier phases of the characteristic function, E
[
e8C.

]
with large C’s, are

negligible through a lemma analogous to Lemma A.9. For low Fourier phases, they use summation to
approximate the integration and a polynomial interpolation.

Now, we show a stronger form of�eorem 1.6. We also give a lower bound of U� (_) (Corollary B.3).
�eorem 1.6 follows directly from �eorem B.1 and corollary B.3.

�eorem B.1 (stronger form of �eorem 1.6). Fix : ≥ 2, Δ ≥ 3. Let � = (+, E) be a :-uniform
hypergraph with maximum degree Δ and = = |+ |. Let Y, _2,Y be defined as in �eorem 1.1. �ere exists

a deterministic algorithm that, on input �, an integer 1 ≤ C ≤ =U� (_2,Y), and an error parameter

[ ∈ (0, 1), outputs an [-relative approximation to 8C (�) in time (=/[)$:,Δ, Y (1) .

To establish a lower bound for the occupancy fraction U� (_), we note that by linearity of expecta-
tion, it suffices to use the marginal lower bounds under Lovász local lemma conditions [EL75, HSS11].

Lemma B.2 ([HSS11, �eorem 2.1], restated). Let � = (+, E) be a :-uniform hypergraph with maxi-

mum degree Δ and let _ > 0 such that

(34) e

(
_

1 + _

) :
· :Δ < 1,

Let � ∼ `�,_ be a random independent set in � with external field _. �en, for any E ∈ + ,

P[E ∉ �] ≤ 1

1 + _ ·
(
1 − e

(
_

1 + _

) :)−:Δ
.

�e following corollary is immediate by noting that the condition in �eorem 1.1 satisfies (34).

Corollary B.3. Fix : ≥ 2, Δ ≥ 3. Let � = (+, E) be a :-uniform hypergraph with maximum degree Δ.

Fix any Y ∈
(
0, 1

9:5Δ2

)
. Let _2,Y be defined as in �eorem 1.1, then for any _ ∈ [0, _2,Y],

U� (_) ≥ 1 − 1

1 + _ ·
(
1 + 1

4eΔ:3

)
.

Before giving the proof of �eorem B.1, we first collect some useful lemmas following the high-
level idea in [JPSS22]. Given an integer C, we first describe how to find the appropriate _∗ such that
|U� (_∗) − C | ≤ 1/2 (Lemma B.6). We provide an algorithm to approximate cumulants which is used
in Lemma B.6. �e B-th cumulant of a random variable . is defined in terms of the coefficients of the
cumulant generating function  . (I) = logE

[
eI.

]
(when this expectation exists in a neighborhood of

0). In particular, the B-th cumulant is

^B (. ) =  (B).
(0).

We show that we can provide an additive approximation to cumulants.
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Lemma B.4. Fix : ≥ 2, Δ ≥ 3. Let � = (+, E) be a :-uniform hypergraph with maximum degree Δ.

Let = = |+ |. Fix any Y ∈
(
0, 1

9:5Δ2

)
. Let _2,Y be defined as in �eorem 1.1. For any _ ∈ [=−2, _2,Y], let

� ∼ `�,_, - = |� | and ^B (-) be the B-th cumulant of - . Let [ ∈ (0, 1) be an error parameter. �ere

exists an algorithm that outputs an [-additive approximation to ^B (-) in time $:,Δ,Y,B ((=/[)$:,Δ, Y (1) ).
In particular, this provides an FPTAS for the multiplicative approximation of E[-] and Var[-].

Remark B.5. �is is an analog of [JPSS22, �eorem 1.7]. However, they do not need a lower bound of
_ ≥ =−2 because they are able to handle small _’s differently by a cluster expansion. And for large _’s,
they use a polynomial interpolation. So, their algorithm does not require a lower bound of _ and runs
in linear time in =. We claim that the regime we considered is sufficient to prove �eorem 1.6. We will
see this fact in the proof of Lemma B.6.

Now, we describe the high-level ideas of the proof. First, we can express cumulants by the derivatives
of the log-partition function. By the standard tool in [Bar16] and the fundamental theorem of algebra,
one can express the derivatives of the log-partition function by the combination of inverse power series.
For example, let / (G) = ∏=

8=1 (1 − A8G) where A1, A2, . . . , A= donates the inverse roots of / . So we have
that,

3B log / (G)
3GB

= −(B − 1)!
=∑
8=1

AB8

∞∑
0=0

(
B − 1 + 0
B − 1

)
(A8G)0.

�enwe can truncate the series and calculate the truncated series using the approximate inverse power
series derived by [PR17, LSS17]. �is finishes the proof of the additive approximation of the cumulant.
For the FPTAS for E[-] and Var[-], we need to convert the additive error to a multiplicative error.
So, it suffices to show that E[-] = Ω:,Δ,Y (_=) and Var = Ω:,Δ,Y (_=). To see this, note that _ ≥ =−2, if
we want a [′-relative approximation, we can set [ = [′=−1. And these two lower bounds follow from
Corollary B.3 and Corollary A.6.

Next, we present a lemma for finding an appropriate external field.

Lemma B.6. Fix : ≥ 2, Δ ≥ 3. Let � = (+, E) be a :-uniform hypergraph with maximum degree Δ.

Let = = |+ |. Fix any Y ∈
(
0, 1

9:5Δ2

)
. Let _2,Y be defined as in �eorem 1.1. �en there exists a constant

Z = Z:,Δ,Y . For C ∈ Z≥1 and C ≤ =U� (_2,Y), there exists an integer B ∈ {1, 2, . . . , 2Z=} such that

|=U� (B/(2Z=)) − C | ≤ 1/2.
Furthermore, for a given C, there exists an algorithm to find such B that runs in time $:,Δ,Y (=$:,Δ, Y (1) ).

Proof. For any _ ∈ (0, _2,Y], let �_ ∼ `�,_, -_ = |�_ |. By a standard calculation, we have that U� (_) =
1
|+ |

_/′
�
(_)

/� (_) . By Corollary B.3, it holds that

m

m_
U� (_) =

1

_=
Var[-_] = Θ:,Δ,Y (1).

�erefore, we set Z = max_∈ (0,_2,Y ]
m
m_
U� (_) = Θ:,Δ,Y (1). By the above calculation, we know that

U� (_) is nondecreasing. Andwe see that =U� (_) increases atmost 1/2 over an internal length 1/(2Z=).
So for any C ≤ =U, there must be an integer B ∈ {1, 2, . . . , 2Z=} such that |=U� (B/(2Z=)) − C | ≤ 1/2.

Note =U� (_) = E_(-_) and recall that for _ ∈ (=−2, _2,Y], we can use Lemma B.4 to compute
E_(-_) with 1/4 additive error by se�ing [ = 1/4. So we can use this method to find such B. �

�e next lemma is an analog of [JPSS22, Lemma 4.3], which shows that for low Fourier phases,
E

[
e8C.

]
with small C’s, we can approximate them by the interpolation method.

Lemma B.7. Fix : ≥ 2, Δ ≥ 3 and a parameter � ≥ 1. Let � = (+, E) be a :-uniform hypergraph with

maximum degree Δ. Let = = |+ |. Let Y, _2,Y be defined as in �eorem 1.1. For any _ ∈ [=−2, _2,Y], let
� ∼ `�,_, - = |� |, ¯̀ = E[-], f2 = Var[-] and . = (- − ¯̀)/f. �ere exists a deterministic algorithm

that, on input �, _, an error parameter [ ∈ (0, 1/√=), and C ∈
[
−�

√
log 1/[, �

√
log 1/[

]
outputs an

[-relative, [-additive approximation to E
[
e8C.

]
in time (=/[)$:,Δ, Y,� (1) .
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Nowwe describe the proof of LemmaB.7. We first express the characteristic function by the partition
function.

E
[
e8C.

]
= e−8C ¯̀/f · E

[
e8C-/f

]
= e−8C ¯̀/f · /� (_e

8C/f)
/� (_)

.

So, if we can approximate the partition function, ¯̀ and f, then we can approximate E
[
e8C.

]
. We can

use Lemma B.4 to approximate ¯̀ and f. For the partition function, we use a polynomial interpolation.
For _ ≤ 1

10Δ
, for any C ∈ R, _e8C/f is in the zero-free region due to [GMP+24].

For _ > 1
10Δ

, by Corollary A.6, we have f2 = Ω:,Δ,Y (=). We may assume that for |C | ≤ �
√
log 1/[,

_e8C/f is inDY , otherwise it follows that [
−1 = exp(Ω:,Δ,Y,� (=)), so that the exhaustive enumeration

runs in the claimed time.
Finally, we are ready to give a proof sketch of�eoremB.1. Given all the ingredients of zero-freeness

and local CLT, our proof closely follows that of [JPSS22] and we will not repeat formally.
First, we use Lemma B.6 to find _∗ such that |=U� (_∗) − C | ≤ 1/2. Let ¯̀ = E[-], f2 = Var[-],

note that we only need to consider the case satisfying f > 2 > 1 where 2 is a constant. To see
this, we argue that if f ≤ 2, then C must also be an absolute constant, and we can simply enumerate
all the independent sets of size C using brute-force in time $ (=C ). By Corollary A.6, we have f2 =

Θ:,Δ,Y (_=), so there exists a constant Z:,Δ,Y such that f ≤ 2 means _ ≤ Z:,Δ,Y/=. Also, by the proof
of Lemma B.6, we know that by changing _ from 0 to Z:,Δ,Y/=, =U� (_) only changes by a constant.
�erefore, the corresponding C’s satisfy C ≤ \:,Δ,Y for some constant \:,Δ,Y . As such, we can use
brute-force enumeration to calculate 8C (�) in time $ (=C ).

Henceforth, we assume f > 2 > 1. By �eorem A.4, Corollary A.6 and the fact that f > 2, we

have P[- = C] = Ω:,Δ,Y (1/
√
_∗=) = Ω:,Δ,Y (1/f). Recall (33), it suffices to approximate P[- = C] and

/� (_∗) in order to approximate 8C (�). Let. = (- − ¯̀)/f and H = (C − ¯̀)/f. By the Fourier inversion
formula,

P[- = C] = P[. = H] = 1

2cf

∫ cf

−cf
E

[
e8C.

]
e−8C H3C.

By Lemma A.9, let W = min(cf,�:,Δ,Y

√
log 1/[) where �:,Δ,Y is a sufficiently large constant de-

pending on :,Δ, Y, we know that the contribution of high Fourier phases is negligible compared to

P[- = C] = Ω:,Δ,Y (1/
√
_∗=) = Ω:,Δ,Y (1/f). So we know that,

P[. = H] ≈ 1

2cf

∫ W

−W
E

[
e8C.

]
e−8C H3C.

�en we replace the integration with summation. For Z = >([), we have that

P[. = H] ≈ Z

2cf

WZ −1∑
C=−WZ −1

E

[
e8C Z

−1.
]
e−8Z

−1C H .

For the characteristic function, we use Lemma B.7 for approximation. To approximate ¯̀ and f, we
apply Lemma B.4. �ese allow us to approximate P[. = H]. Recalling (33), the missing part to approx-
imate 8C (�) is /� (_∗), which can be derived by the polynomial interpolation.
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