
ar
X

iv
:2

50
2.

05
87

7v
2

 [
cs

.D
S]

 1
4

Fe
b

20
25

SINK-FREE ORIENTATIONS: A LOCAL SAMPLER WITH APPLICATIONS

KONRAD ANAND, GRAHAM FREIFELD, HENG GUO, CHUNYANG WANG, JIAHENG WANG

Abstract. For sink-free orientations in graphs of minimum degree at least 3, we show that there

is a deterministic approximate counting algorithm that runs in time $ ((=73/Y72) log(=/Y)), a near-

linear time sampling algorithm, and a randomised approximate counting algorithm that runs in time

$ ((=/Y)2 log(=/Y)), where = denotes the number of vertices of the input graph and 0 < Y < 1 is the

desired accuracy. All three algorithms are based on a local implementation of the sink popping method

(Cohn, Pemantle, and Propp, 2002) under the partial rejection sampling framework (Guo, Jerrum, and Liu,

2019).

1. Introduction

�e significance of counting has been recognised in the theory of computing since the pioneering
work of Valiant [Val79b, Val79a]. In the late 80s, a number of landmark approximate counting algo-
rithms [JS89, DFK91, JS93] were discovered. A common ingredient of these algorithms is the computa-
tional equivalence between approximate counting and sampling for self-reducible problems [JVV86].
�e reduction from counting to sampling decomposes the task into a sequence of marginal probabil-
ity estimations, each of which is tractable for sampling techniques such as Markov chains. However,
while only the marginal probability of one variable is in question, simulating Markov chains requires
keeping track of the whole state of the instance, and thus is obviously wasteful. It is more desirable to
draw samples while accessing only some local structure of the target variable. We call such algorithms
local samplers.

�e first such local sampler was found by Anand and Jerrum [AJ22], who showed how to efficiently
generate perfect local samples for spin systems even when the underlying graph is infinite. Using local
information is essential here as it is not possible to perfectly simulate the whole state. Subsequently,
Feng, Guo, Wang, Wang, and Yin [FGW+23] found an alternative local sampler, namely the so-called
coupling towards the past (CTTP) method, which yields local implementations of rapid mixingMarkov
chains. It is also observed that sufficiently efficient local samplers lead to immediate derandomisation
via brute-force enumeration. Moreover, local samplers are crucial to obtain sub-quadratic time ap-
proximate counting algorithms for spin systems [AFF+25]. �us, local samplers are highly desirable
algorithms as they can lead to fast sampling, fast approximate counting, and deterministic approximate
counting algorithms.

Guo, Jerrum, and Liu [GJL19] introduced partial rejection sampling (PRS) as yet another efficient
sampling technique. �is method generalises the cycle-popping algorithm for sampling spanning trees
[Wil96] and the sink-popping algorithm for sampling sink-free orientations [CPP02]. It also has close
connections with the Lovász local lemma [EL75]. For extremal instances (in the sense of [KS11]), PRS
is just the celebrated Moser-Tardos algorithm for the constructive local lemma [MT10]. �e most no-
table application of PRS is the first fully polynomial-time randomised approximation scheme (FPRAS)
for all-terminal network reliability [GJ19]. On the other hand, it is still open if all-terminal reliability

(Konrad Anand, Graham Freifeld, and Heng Guo) School of Informatics, University of Edinburgh, Informatics

Forum, Edinburgh, EH8 9AB, United Kingdom.

(Chunyang Wang) State Key Laboratory for Novel Software Technology, New Cornerstone Science Labora-

tory, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu Province, China.

(Jiaheng Wang) Faculty of Informatics and Data Science, University of Regensburg, Bajuwarenstrasse 4, 93053

Regensburg, Germany.

�is project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant agreement No. 947778). Jiaheng Wang also acknowledges support from the ERC

(grant agreement No. 101077083).

1

http://arxiv.org/abs/2502.05877v2

and counting sink-free orientations admit deterministic fully polynomial-time approximation schemes
(FPTASes). �us, in view of the aforementioned derandomisation technique [FGW+23], a local imple-
mentation of PRS is a promising way to resolve these open problems.

In this paper, wemake some positive progress for sink-free orientations (SFOs). Given an undirected
graph � = (+, �), a sink-free orientation of � is an orientation of edges such that each vertex has at
least one outgoing edge. SFOs were first studied by Bubley and Dyer [BD97a] as a restricted case
of Sat.1 �ey showed that exact counting of SFOs is #P-complete, and thus is unlikely to have a
polynomial-time algorithm. For approximate counting and sampling, in [BD97b], they showed that
a natural Markov chain has an $ (<3) mixing time, where < is the number of edges. Later, Cohn,
Pemantle, and Propp [CPP02] introduced an exact sampler, namely the aforementioned sink-popping
algorithm that runs in $ (=<) time in expectation, where = is the number of vertices. Using the PRS
framework, Guo and He [GH20] improved the running time of sink-popping to$ (=2), and constructed
instances where this running time is tight. It is open whether a faster sampling algorithm or an FPTAS
exists.

Our main result is a local sampler based on PRS for SFOs. Using this local sampler, for graphs
of minimum degree 3, we obtain a deterministic approximate counting algorithm that runs in time
$ ((=73/Y72) log(=/Y)), a near-linear time sampling algorithm, and a randomised approximate count-
ing algorithm that runs in time$ ((=/Y)2 log(=/Y)), where Y is the given accuracy. All three algorithms
appear difficult to obtain using previous techniques. We will describe the results in more detail in the
next section.

1.1. Our contribution and technique overview. Our local sampler works for a slight generalisation
of SFOs, which are intermediate problems required by the standard counting to sampling reduction
[JVV86]. In these problems, a subset (of vertices is specified, which are required to be sink-free, and
the task is to estimate the probability of a vertex E not in (not being a sink.

Before describing our technique, let us first review the sink-popping algorithm, (which is a special
case of PRS and the same as theMoser-Tardos algorithm [MT10] as the instance is extremal). We orient
each edge uniformly at random. As long as there is a sink in (, we select one such vertex, arbitrarily,
and rerandomise all edges incident to it, until there is no sink belong to (.

Our key observation is that it is unnecessary to simulate all edges to decide if E is a sink. In particular,
if, at any point of the execution of the algorithm, E is a sink, then no adjacent edges will ever be
resampled and E stays a sink till the algorithm finishes. On the other hand, if at any point E belongs
to a cycle, a path leading to a cycle, or a nonempty path leading to some vertex not in (, then the
orientations of all edges involved will not be resampled, and E stays a non-sink until the algorithm
terminates. �us, this observation gives us an early termination criterion for determining whether
E is a sink or not. Moreover, since in the sink-popping algorithm, the order of sinks popped can be
arbitrary, we can reveal the random orientation of edges strategically, and pop sinks if necessary. To
be more precise, we first reveal the edges adjacent to E one by one. Once there is an outgoing edge
(E, D), we then move to D and repeat this process. If any sink is revealed, we erase the orientations of
all its adjacent edges and backtrack. Eventually, one of the two early termination rules above will kick
in, and this gives us a local sample.

Ideally, we want our local sampler to run in $ (log =) time, where = is the number of vertices. Un-
fortunately, the one described above does not necessarily terminate this fast. To see this, consider a
sequence of degree 2 vertices, where at each step there is equal probability to move forward or back-
track. Resolving such a path of length ℓ would require Θ(ℓ2) time. On the other hand, when the
minimum degree of the input graph is at least 3, the length of the path followed by the sampler forms
a submartingale. �e vertex E can be a sink only if this path has length 0. �us, once the length of the
path is at least � log = for some constant � , the probability of E being a sink is very small. �is allows
us to truncate the local sampler with only a small error.

1As a side note, we remark that SFOs are also introduced in the context of distributed computing under the name of

sinkless orientations, where they are used to give a lower bound for the distributed Lovász local lemma [BFH+16].
2

�e FPTAS for #SFO follows from the derandomisation method of [FGW+23] to the truncated local

sampler. By Y-approximation, we mean an estimate /̃ such that 1 − Y ≤ /̃
/
≤ 1 + Y, where / is the

target quantity. Also, all our algorithms work for not necessarily simple graphs.

�eorem 1.1 (deterministic approximate counting). For graphs with minimum degree at least 3, there
exists a deterministic algorithm that, given 0 < Y < 1, outputs an Y-approximation to the number of
sink-free orientations with running time $ ((=73/Y72) log(=/Y)), where = is the number of vertices.

Although high, the constant exponent in the running time of�eorem 1.1 is actually the most inter-
esting feature of our algorithm. In contrast, the running time of most known FPTASes [Wei06, BG06,
BGK+07, HSV18, Bar16, PR17,Moi19, FGW+23, CFG+24] has an exponent that depends on some parame-
ter (such as the maximum degree) of the input graph. �ere are exceptions, for example, [LLY13, GL18],
but the exponents of their running times still depend on the parameters of the problem (not of the in-
stance).

For fast sampling, we need a slight modification of the idea above to sample orientations of edges
one by one, resulting in the following approximate sampler.

�eorem 1.2 (fast sampling). For graphs with minimum degree at least 3, there exists a sampling algo-
rithm that, given 0 < Y < 1, outputs a random orientation f such that f is Y-close to a uniform random
sink-free orientation in total variation distance, with running time$

(
< log

(
<
Y

))
, where < is the number

of edges.

Our sampler runs in $̃ (<) time2 instead of the$ (=2) time that sink-popping requires, at the cost of
generating an approximate sample instead of a perfect sample. �is improves over sink-popping when
< = >(=2/log =) and leads to a faster FPRAS using the counting-to-sampling reduction [JVV86]. In
fact, the running time of the FPRAS can be improved further by directly invoking the truncated local
sampler in the reduction.

�eorem 1.3 (fast approximate counting). For graphs with minimum degree at least 3, there exists a
(randomised) algorithm that, given 0 < Y < 1, outputs a quantity that is an Y-approximation with
probability at least 3/4 to the number of sink-free orientations. �e running time is $ ((=/Y)2 log(=/Y)),
where = is the number of vertices.

�e success probability 3/4 in �eorem 1.3 is standard in the definition of FPRAS, and can be easily
amplified by taking the median of repeated trials and applying the Chernoff bound.

Note that directly combining �eorem 1.2 with the counting-to-sampling reduction results in an

$̃ (=</Y2) running time. �eorem 1.3 is faster when < = l(=). Previously, the best running time

for approximate counting is $̃ (=3/Y2), via combining the $ (=2) time sink-popping algorithm [GH20]
with simulated annealing (see, for example, [GH20, Lemma 12]). �eorem 1.3 improves over this by
roughly a factor of =. In very dense graphs (when < = Ω(=2)), �eorem 1.3 achieves near-linear time,
which appears to be rare for approximate counting.

�ere are a plethora of fast sampling and deterministic approximate counting techniques by now.
However, it appears difficult to achieve our results without the new local sampler. For example, the cou-
pling of Bubley andDyer [BD97b] does not seem to improvewith theminimumdegree requirement. On
a similar note, the recent deterministic counting technique of [CFG+24] requires a distance-decreasing
Markov chain coupling, whereas the Bubley-Dyer coupling is distance non-increasing. In any case,
even if the technique of [CFG+24] applied, it would not imply a running time with a constant exponent.
Other fast sampling and FPTAS techniques, such as spectral independence [ALO20, CLV21, CG24],
correlation decay [Wei06, LLL14], and zero-freeness of polynomials [Bar16, PR17, GLLZ21], all seem
difficult to apply. �e main obstacle is that these techniques typically make use of properties that hold
under arbitrary conditionings. However, for SFO, even if we start with a graph of minimum degree
3, conditioning the edges can result in a graph that is effectively a cycle, in which case no nice prop-
erty holds. Our techniques, in contrast, require no hereditary properties and thus can benefit from the
minimum degree requirement.

2�e $̃ notation hides logarithmic factors.

3

One much less obvious alternative approach to FPTAS is via the connection of the local lemma.
In particular, because SFOs form extremal instances, their number can be computed via the indepen-
dence polynomial evaluated at negative weights on the dependency graph. (We also see this fact in
Section 4.1.) Normally this approach would not be efficient, because the dependency graph is usually
exponentially large (for example for all-terminal reliability), but in the case of SFOs, the dependency
graph is just the input graph itself. �ere are more than one FPTASes [PR17, HSV18] for the indepen-
dence polynomial at negative weights. However, neither appears able to recover �eorem 1.1. With
the minimum degree ≥ 3 assumption, the probability vector for SFOs is within the so-called Shearer’s
region, where both algorithms apply.3 �e downside is that the running time of both algorithms has
the form (=/Y)$ (log 3) ,4 where 3 is the maximum degree of the graph. �us, in the se�ing of �eo-
rem 1.1, these algorithms run in quasi-polynomial time instead. A more detailed discussion is given in
Section 4.2.

�e rest of the paper is organised as follows. In Section 2, we introduce our local sampler. It is
then analysed in Section 3. �e main theorems are shown in Section 4. We conclude with a few open
problems in Section 5.

2. A local sampler for sink-free orientations

Fix� = (+, �) as an undirected graph. An orientationf of� is an assignment of a direction to each
edge, turning the initial graph into a directed graph. For any (⊆ + , let Ω(be the set of (-sink-free
orientations of � , i.e., the set of orientations such that each vertex E ∈ (is not a sink. �us, Ω+ is
the set of all (normal) sink-free orientations of � . When |Ω(| ≠ 0, we use `(to denote the uniform
distribution over Ω(. For two adjacent vertices D, E ∈ + , we use {D, E} to denote the undirected edge
and (D, E) to denote the directed edge, from D to E.

We apply the following standard counting-to-sampling reduction [JVV86]. Let + = {E1, E2, . . . , E=}
be arbitrarily ordered and, for each 0 ≤ 8 ≤ =, define +8 = {E1, E2, . . . , E8}. �en, |Ω+ | can be decom-
posed into a telescopic product of marginal probabilities:

(1) |Ω+ | =
��Ω+0

�� · =∏
8=1

��Ω+8

����Ω+8−1

�� = 2 |� | ·
=∏
8=1

`+8−1
(E8 is not a sink).

�us, our goal becomes to estimate `((E is not a sink) for any (⊆ + and E ∉ (.
We view (-sink-free orientations under the variable framework of the Lovász local lemma. Here,

each edge corresponds to a variable that indicates its direction, and each vertex in (represents a bad
event of being a sink. An instance is called extremal if any two bad events are independent (namely,
they share no common variable) or disjoint. It is easy to see that all instances to the (-sink-free orien-
tation problem are extremal: if a vertex is a sink then none of its neighbors can be a sink. For extremal
instances like this, the celebrated Moser-Tardos algorithm [MT10] is guaranteed to output an assign-
ment avoiding all bad events uniformly at random [GJL19]. �is is summarised in Algorithm 1. Note
that when (= + , Algorithm 1 is the sink-popping algorithm by Cohn, Pemantle, and Propp [CPP02].

�e following lemma is a direct corollary from [GJL19, �eorem 8] and SFOs being extremal.

Lemma 2.1. If |Ω(| ≠ 0, Algorithm 1 terminates almost surely and returns an orientation distributed
exactly as `(.

We remark that the only possible case for Ω(= ∅ is when (forms a tree and not connected to any
vertex not in (.

Algorithm 1 requires one to generate a global sample when estimating `((E is not a sink) for some
E ∉ (, which is wasteful. �e following observation is crucial to turning it into a local sampler.

3In [PR17], only a uniform bound is stated, but one can introduce a scaling variable C and make a new polynomial in C, so

that their algorithm works in the Shearer’s region.
4Tobemore precise, the hidden constants in the exponents decrease in themultiplicative “slack” of how close the evaluated

point is to the boundary of Shearer’s region. For SFOs, when constant degree vertices are present, the slack is a constant,

and so are the hidden constants in the exponents.

4

Algorithm 1: PRS algorithm for generating an (-sink-free orientation

Input :an undirected graph � = (+, �) and a subset of vertices (⊆ +

Output :an orientation f of �
1 orient each edge 4 ∈ � uniformly at random and independently to obtain an orientation f;

2 while ∃E ∈ (s.t. E is a sink in f do

3 choose such a E arbitrarily;

4 resample the orientation of all edges incident to E in f uniformly at random;

5 return f;

E

(b1)

D

E

(b2)

E

(a)

Figure 1. Illustration of Lemma 2.2. Shaded vertices are in the set (. Once these
pa�erns are formed, thick red edges would never be resampled in Algorithm 1.

Lemma 2.2 (criteria for early termination). Suppose |Ω(| ≠ 0. For any E ∉ (, E is a sink upon the
termination of Algorithm 1 if and only if

(a) E becomes a sink at some iteration.

Conversely, E is not a sink upon the termination of Algorithm 1 if and only if one of the following holds:

(b1) a directed cycle � containing E, or a directed path % containing E which ends in a directed cycle
� is formed in some iteration, or

(b2) a nonempty directed path % from E to some D ∉ (is formed in some iteration.

Proof. First, consider (a). If E becomes a sink at any point, then for every F ∈ (which is a neighbour
of E, the edge (F, E) is oriented towards E. Since E ∉ (, the edge (F, E) will not be resampled via E,
and could only be resampled by F becoming a sink. Since F cannot become a sink without resampling
(F, E), E will remain a sink. �e other implication is obvious.

Now for (b1) and (b2), we first consider the forward implications. For a cycle � , every vertex D ∈ �
has an edge pointing outwards towards some F ∈ � which also has an edge pointing outwards. None
of these edges can be resampled without another edge 4 ∈ � being resampled first, so no vertex in the
cycle will ever become a sink again.

Consider a path % that ends outside of (or in a cycle. Inductively, we see that no edge on this path
will be resampled without the edge a�er it being resampled. �e edge connected to the cycle or (2 will
not be resampled, since that vertex may never be a sink, so no vertex in % can become a sink.

For the reverse implication, suppose E is eventually not a sink. In that case, there must be some edge
(E, F) pointing towards a neighbour F. If F is a sink, then F ∉ (and we are in case (b2). Otherwise, F
is not a sink, and there is an adjacent edge pointing away from F, and we repeat this process. As the
set of vertices is finite, if vertices considered in this process are all in (, then there must be repeated
vertices eventually, in which case we are in (b1). �

An illustration of Lemma 2.2 is given in Figure 1. Based on Lemma 2.2, we design a local sampling
algorithm for determiningwhether some vertex E ∉ (is a sink or not, given in Algorithm 2. We assume
that the undirected graph � = (+, �) is stored as an adjacency list where the neighbors of each vertex
are arbitrarily ordered. Algorithm 2 takes as input some (⊆ + and E ∉ (, returns an indicator variable
G ∈ {0, 1} such that Pr [G = 1] = `((E is not a sink). We treat the path % as a subgraph, and + (%)

5

denotes the vertex set of %. When we remove the last vertex from %, we remove it and the adjacent
edge as well. Informally, Algorithm 2 starts from the vertex E, and reveal adjacent edges one by one.
If there is any edge pointing outward, say (E, D), we move to D and reveal edges adjacent to D. If a
sink F ∈ (is formed, then we mark all adjacent edges of F as unvisited and backtrack. �is induces
a directed path starting from E. We repeat this process until any of the early termination criteria of
Lemma 2.2 is satisfied, in which case we halt and output accordingly.

Algorithm 2: Sample(�, (, E)
Input :an undirected graph � = (+, �), a subset of vertices (⊆ + , and a vertex E ∉ (;
Output :a random value G ∈ {0, 1};

1 Let % be a (directed) path initialised as % = (E);
2 Initialise a mapping " : � → {visited, unvisited} so that ∀4 ∈ � , " (4) = unvisited;

3 while |+ (%) | ≥ 1 do

4 Let D be the last vertex of %;

5 if |+ (%) | ≥ 2 and D ∉ (then return 1;

6 if all edges incident to D are marked visited then

7 mark all edges incident to D as unvisited;

8 remove D from %;

9 else

10 let 4 = {D, F} be the first unvisited edge incident to D;

11 mark 4 as visited;

12 with probability 1/2 do

13 if F ∈ + (%), or there is a visited edge (F, F′) for some F′ ∈ + (%) then return 1;

14 append F to the end of %;

15 return 0;

3. Analysis of the local sampler

In this section, we analyse the correctness and efficiency of Algorithm 2.

Lemma 3.1 (correctness of Algorithm 2). Let � = (+, �) be a graph. For any (⊆ + such that |Ω(| ≠ 0

and any E ∉ (, Sample(�, (, E) terminates almost surely and upon termination, returns an G ∈ {0, 1}
such that

Pr [G = 1] = `((E is not a sink).

Proof. We claim that there exists a coupling between the execution of Algorithm 1 (with input �, (

and output f), and Sample(�, (, E) (with output G), such that

(2) E is not a sink under f ⇐⇒ G = 1.

�e claim implies the lemma because of Lemma 2.1.
To prove the claim, we first construct our coupling. We use the resampling table idea of Moser

and Tardos [MT10]. For each edge, we associate it with an infinite sequence of independent random
variables, each of which is a uniform orientation. �is forms the “resampling table”. Our coupling
uses the same resampling table for both Algorithm 1 and Algorithm 2. As showed in [MT10], the
execution of Algorithm 1 can be viewed as first constructing this (imaginary) table, and whenever the
orientation of an edge is randomised, we just reveal and use the next random variable in the sequence.
For Algorithm 2, we reveal the orientation of an edge when its status changes from unvisited to visited
in Line 11. We execute Line 14 if the random orientation from the resampling table is (D, F), and
otherwise do nothing. Namely, in the la�er case, the revealed orientation is (F, D), and we just move
forward the “frontier” of that edge by one step in the resampling table. We claim that (2) holds with
this coupling.

6

Essentially, the claim holds since for extremal instances, given a resampling table, the order of the
bad events resampled in Algorithm 1 does not affect the output. �is fact is shown in [GJ21, Section 4].
(See also [CPP02, Lemma 2.2] for the case of (= + .) We can “complete” Algorithm 2 a�er it finishes.
Namely, once Algorithm 2 terminates, we randomise all edges that are not yet oriented, and resample
edges adjacent to sinks until there are none, using the same resampling table. Note that at the end of
Algorithm 2, some edges may be marked unvisited but are still oriented. Suppose that the output of
the completed algorithm is f′, an orientation of all edges. �is completed algorithm is just another
implementation of Algorithm 1with a specific order of resampling bad events. �us the fact mentioned
earlier implies that f′ = f.

On the other hand, the termination conditions of Algorithm 2 correspond to the cases of Lemma 2.2.
One can show, via a simple induction over the while loop, that at the beginning of the loop, the path % is
always a directed path starting from E, and all other visited edges point towards the path %. �is implies
that Line 13 corresponds to case (b1) in Lemma 2.2, Line 5 corresponds to case (b2), and exiting the
while loop in Line 3 corresponds to case (a). When Algorithm 2 terminates, we have decided whether
or not E is a sink. By Lemma 2.2, this decision stays the same under f′. As f′ = f, (2) holds. �

We then analyse the efficiency of Algorithm 2. �e main bo�leneck is when there are degree 2

vertices. It would take Ω(ℓ2) time to resolve an induced path of length ℓ. We then focus on the
case where the minimum vertex degree is at least 3. Note that in this case we have Ω(≠ ∅ for any
(⊆ + . For two distributions % and & over the state space Ω, their total variation distance is defined
by 3TV (%,&) ≔

∑
G∈Ω |%(G) − & (G) |/2. For two random variables G ∼ % and H ∼ &, we also write

3TV (G, H) to denote 3TV (%,&). �en we have the following lemma.

Lemma 3.2 (efficient truncation of Algorithm 2). Let � = (+, �) be a graph with minimum degree at
least 3. Let (⊆ + , E ∉ (and 0 < Y < 1. Let G be the output of Sample(�, (, E), and G′ constructed as

• if Sample(�, (, E) terminates within 72 ln(73/Y) executions of Line 12, let G′ = G;
• otherwise, let G′ = 1.

�en, it holds that

3TV (G, G′) ≤ Y.

Proof. We track the length of the path % during the execution of Algorithm 2. When an edge is chosen
in Line 4 and sampled in Line 12 of Algorithm 2, the following happens:

• with probability 1/2, F is appended to % and the length of % increases by one;
• with probability 1/2, {D, F} is marked as visited, and the length of % decreases by one in the
next iteration if and only if {D, F} was the last unvisited edge incident to D.

Let -8 be the random variable denoting the length of % a�er the 8-th execution of Line 12 in Algo-
rithm 2. �en the observation above implies that {-8}8≥0 forms a submartingale. We construct another
sequence of random variables {.8}8≥0 modified from {-8}8≥0 as follows:

• .0 = -0 = 1.
• At the 8-th execution of Line 12 in Algorithm 2:

– if {D, F} is the only unvisited edge incident to D, set .8+1 = -8+1 − -8 +.8 ,
– otherwise, set .8+1 = -8+1 − -8 +.8 − 1/2.

It can be verified that the sequence {.8}8≥0 is a martingale.

Claim 3.3. For any 8 ≥ 0, -8 − .8 ≥ 8/4.

Proof. Note that -8 −.8 = -8−1 −.8−1 + 28 where 28 = 0 if {D, F} is the only unvisited edge incident to
D at the 8-th execution of Line 12 in Algorithm 2, and 28 = 1/2 otherwise. �en we can write -8 −.8 as

-8 − .8 = -0 − .0 +
8∑
9=1

2 9 .

For any 8 such that 28 = 0, let 8′ be the last index such that 28′ = 0, or 8′ = 0 if no such 8′ exists. Since the
minimum degree of � is at least 3, when we append any vertex D to %, there are at least two unvisited

7

edges incident to D. It implies that there must be some 9 such that 8′ < 9 < 8 and 2 9 = 1/2. �us

-8 − .8 =
∑8

:=1 2: ≥ 8/4. �

Next we show that if Algorithm 2 doesn’t terminate a�er 72 ln(73/Y) steps, with high probability
the length of the path will not return to 0. As {.8}8≥0 is a martingale and |.8+1 − .8 | ≤ 3/2 for all 8 ≥ 0,
the Azuma–Hoeffding inequality implies that, for any) > 0 and � > 0,

Pr [.) − .0 ≤ −�] ≤ exp

(
�2

9)/2

)
.(3)

�us,

Pr [-) = 0] ≤ Pr [.) ≤ −)/4] ≤ Pr [.) − .0 ≤ −)/4] ≤ exp (−)/72) ,
where the first inequality is by Claim 3.3, and the last inequality is by plugging � =)/4 into (3). �en,
we have

∞∑
)=⌈72 ln 73

Y
⌉

Pr [-) = 0] ≤
∞∑

)=⌈72 ln 73

Y
⌉

exp (−)/72) ≤
∞∑

)=72 ln 73

Y

exp (−)/72) = Y

73(1 − e−1/72)
< Y.

(4)

To finish the proof, we couple G and G′ by the same execution of Algorithm 2. �us, if it terminates
within 72 ln(73/Y) executions of Line 12, then G = G′ with probability 1. If not, (4) implies that G = 0

with probability at most Y. As we always output G = 1 in this case, G′ ≠ G with probability at most Y,
which finishes the proof. �

Note that Lemma 3.2 does not require Ω(≠ ∅. �is is because it is implied by the minimum degree
requirement. �is implication is an easy consequence of the symmetric Shearer’s bound. It is also
directly implied by Lemma 4.1 which we show next.

4. Applications of the local sampler

We show the main theorems in this section. Lemma 3.2 implies an additive error on the truncated
estimator. As we are a�er relative errors in approximate counting, we need a lower bound of the
marginal ratio.

Lemma 4.1. Let � = (+, �) be a graph with a minimum degree at least 3. For any (⊆ + and E ∉ (, it
holds that |Ω(| ≠ 0 and

`((E is not a sink) >
1

2
.

�e proof of Lemma 4.1 can be viewed as an application of the symmetric Shearer’s Lemma [She85]
on SFO, and is deferred to Section 4.1. Note that the minimum degree requirement is essential for such
a marginal lower bound to hold, as the marginal ratio in Lemma 4.1 can be of order $ (1/=) when � is
a cycle and (= + \ {E}.

We then show the two approximate counting algorithms first, namely�eorem 1.1 and�eorem 1.3.

Proof of �eorem 1.1. By (1), we just need to Y/(2=)-approximate `+8−1
(E8 is not a sink) for each 8 to

Y-approximate |Ω+ |, the number of sink-free orientations to � . �e only random choice Algorithm 2
makes is Line 12. In view of Lemma 3.2, we enumerate the first 72 ln(292=/Y) random choices of
choices Algorithm 2, and just output 1 if the algorithm does not terminate by then. Let the estimator be
the average of all enumeration. Note that Lemma 4.1 implies thatΩ+8

≠ ∅ for any 8. �en, Lemmas 3.1
and 3.2 imply that the estimator is an Y/(4=) additive approximation. By Lemma 4.1, it is also an Y/(2=)
relative approximation, which is what we need.

For the running time, there are = marginals, it takes exp(72 ln(292=/Y)) enumerations for each
marginal probability, and each enumeration takes time at most $ (ln(292=/Y)) time. �erefore, the
overall running time is bounded by $ (=(=/Y)72 log(=/Y)). �

8

Proof of �eorem 1.3. We use (1) again. Denote a8 = `+8−1
(E8 is not a sink) and a =

∏=
8=1 a8 . Let -̃8 ≔

1
=

∑=
8=1 G

′
8,C

be the average of = independent samples fromAlgorithm 2 truncated a�er 72 ln(73×12=/Y)
executions of Line 12. Let -̃ ≔

∏=
8=1 -̃8 be an estimator for a.

For any 8 and C, let ã8 be the expectation of G8,C (note that it does not depend on C). By Lemmas 3.1

and 3.2, |ã8 − a8 | ≤ Y
12=

. By Lemma 4.1, 1 − Y
6=
≤ ã8

a8
≤ 1 + Y

6=
. Let ã =

∏=
8=1 ã8 so that E

[
-̃
]
= ã. �en,

as 0 < Y < 1,

1 − Y

3
≤ ã

a
≤ 1 + Y

3
.(5)

We bound Var

[
-̃8

]
and Var

[
-̃
]
next. First,

Var
[
-̃8

]
= Var

[
1

=

=∑
C=1

G′8,C

]
=

1

=2

=∑
C=1

Var
[
G′8,C

]
≤ 1

=
,

as each G′
8,C

is an indicator variable. �en,

Var

[
-̃
]

(
E

[
-̃
])2

=

E

[
-̃2

]
(
E

[
-̃
])2
− 1 =

∏=
8=1 E

[
-̃2
8

]
∏=

8=1

(
E

[
-̃8

])2
− 1 =

=∏
8=1

©­­«
1 +

Var

[
-̃8

]
(
E

[
-̃8

])2

ª®®¬
− 1

≤
(
1 + 4

=

)=
− 1 < e4 − 1 < 54.(by Lemma 4.1)

To further reduce the variance, let -̂ be the average of # independent samples of -̃ , where # ≔

⌈36 × 54/Y2⌉. �en, Var[-̂] ≤ Var[-̃]
#

. By Chebyshev’s bound, we have

Pr
[���-̂ − ã��� ≥ Y

3
· ã

]
≤ 9Var[-̂]

Y2 ã2
≤ 9 × 54Y2 ã2

36 × 54
· 1

Y2 ã2
≤ 1

4
.

�us with probability at least 3
4
, we have that (1 − Y

3
) ã ≤ -̂ ≤ (1 + Y

3
) ã. By (5), when this holds,

(1 − Y)a ≤ -̂ ≤ (1 + Y)a. It is then easy to have an Y-approximation of |Ω+ |.
For the running time, each sample G′8,C takes $ (log(=/Y)) time. We draw = samples for each of the

= vertices, and we repeat this process # = $ (Y−2) times. �us, the total running time is bounded by
$ ((=/Y)2 log(=/Y)). �

For �eorem 1.2, we will need a modified version of Algorithm 2 to sample from the marginal
distributions of the orientation of edges. �is is given in Algorithm 3. It takes as input a subset of
vertices (⊆ + and an edge 4 ∈ � , then outputs a random orientation f4 following the marginal
distribution induced from `(on 4. �e differences between Algorithm 2 and Algorithm 3 are:

• In Algorithm 2, the number of vertices in % is initialised as |+ (%) | = 1, while in Algorithm 3,
it is initialised as |+ (%) | = 2.
• When |+ (%) | = 1 and all edges incident to the only vertex D in % are marked as visited:

– In Algorithm 2, the algorithm terminates and returns 0;
– In Algorithm 3, the algorithm terminates if and only if D ∉ (, and would reinitialise the
algorithm otherwise.

�e correctness of Algorithm 3 is due to a coupling argument similar to Lemma 3.1. We couple Algo-
rithm 1 and Algorithm 3 by using the same resampling table. By the same argument as in Lemma 3.1,
given the same resampling table, the orientation of 4 is the same in the outputs of both Algorithm 1
and Algorithm 3. �us, f4 follows the desired marginal distribution by Lemma 2.1. As for efficiency,
we notice that the same martingale argument as in Lemma 3.2 applies to the length of % as well. Early
truncation of the edge sampler only incurs a small error. However, we need some extra care for the
self-reduction in the overall sampling algorithm.

9

Algorithm 3: SampleEdge(�, (, 4)
Input :an undirected graph � = (+, �), a subset of vertices (⊆ + , and an edge

4 = {G, H} ∈ � ;
Output :a random orientation f4 ∈ {(G, H), (H, G)} of 4;

1 Initialise a mapping " : � → {visited, unvisited} so that ∀4 ∈ � , " (4) = unvisited;

2 Let % be a (directed) path initialised as % = (G, H) or % = (H, G) with equal probability, and

mark 4 visited;

3 while True do

4 Let D be the last vertex of %;

5 if |+ (%) | ≥ 2 and D ∉ (then return the first edge in %;

6 if all edges incident to D are marked visited then

7 mark all edges incident to D as unvisited;

8 if |+ (%) | = 1 then

9 rerandomise % as % = (G, H) or % = (H, G) with equal probability;

10 else

11 remove D from %;

12 else

13 let 4 = {D, F} be the first unvisited edge incident to D;

14 mark 4 as visited;

15 with probability 1/2 do

16 if F ∈ + (%), or there is a visited edge (F, F′) for some F′ ∈ + (%) then
17 return the first edge in %;

18 append F to the end of %;

Proof of �eorem 1.2. We sequentially sample the orientation of edges in � (approximately) from its
conditional marginal distribution. Suppose we choose an edge 4 = {D, E}, and the sampled orientation
is (D, E). �en, we can remove 4 from the graph, and let (← (\ {D}. �e conditional distribution is
effectively the same as `(in the remaining graph.

One subtlety here is that doing so may create vertices of degree ≤ 2. To cope with this, we keep
sampling edges adjacent to one vertex in (as much as possible before moving on to the next. Suppose
the current focus is on E. We use SampleEdge to sample the orientation of edges adjacent to E one at
a time until either E is removed from (or the degree of E becomes 1. In the la�er case, the le�over
edge must be oriented away from E, which also results in removing E from (. Note that, when either
condition holds, the last edge sampled is oriented as (E, D) for some neighbour D of E. We then move
our focus to D if D ∈ (, and move to an arbitrary vertex in (otherwise. �e key property of choosing
edges this way is that, whenever SampleEdge(�, (, 4) is invoked, there can only be at most one vertex
of degree 2 in (, and if it exists, it must be an endpoint of 4. If all vertices are removed from (, we
finish by simply outputing a uniformly at random orientation of the remaining edges.

To maintain efficiency, we truncate SampleEdge(�, (, 4) in each step of the sampling process. More
specifically, for some constant� , we output the first edge of % once the number of executions of Line 15
in Algorithm 3 exceeds � ln(</Y). We claim that there is a constant � such that the truncation only
incurs an Y/< error in total variation distance between the output and the marginal distribution. �is
is because the same martingale argument as in Lemma 3.2 still applies. Note that if % visits any vertex
not in (, the algorithm immediately terminates. �us degrees of vertices not in (do not affect the
argument. Moreover, the only degree 2 vertex in (, say G, is adjacent to the first edge 4 = {G, H} of %.
If 4 is initialised as {G, H}, then when % returns to G, the algorithm immediately terminates. Otherwise
4 is initialised as {H, G}, in which case there is no dri� in the first step of %. �us, as long as we
adjust the constant to compensate the potential lack of dri� in the first step, the martingale argument
in Lemma 3.2 still works and the claim holds. As the truncation error is Y/<, we may couple the

10

untruncated algorithm with the truncated version, and a union bound implies that the overall error is
at most Y.

Aswe process each edge in atmost$ (log(</Y)) time, the overall running time is then$ (< log(</Y)).
�is finishes the proof of the fast sampling algorithm. �

4.1. Proof of the marginal lower bound. Now we prove the lower bound of marginal ratios for
SFOs, namely, Lemma 4.1. Let us first recall the variable framework of the local lemma. Consider the
probability spaceP of a uniformly randomorientation of� (namely orienting each edge independently
and uniformly at random), and each D ∈ (corresponding to a bad event ED of D being a sink. We then
have

?D ≔ Pr
P
[ED] = 2−3(D) , ∀D ∈ +,

where 3 (D) denotes the degree of D. We also need some definitions, essentially from [HV17] and small
variations from those in [She85].

Definition 4.2. We define the following notations.

• Let Ind(�) denote all independent sets of � , i.e.,

Ind(�) ≔ {� ⊆ + | � contains no edge of �}.

• For � ⊆ + , let

@� ≔

∑
�∈Ind(�)

�⊆�

(−1) |� |
∏
D∈�

?D,(6)

and

%� ≔ Pr
P

[∧
D∈�
¬ED

]
,

which is the probability under P that all vertices in � are sink-free.

We then proceed to the proof.

Proof of Lemma 4.1. For D ∈ + , let Γ(D) denote the set of neighbours of D in � . We claim that for any
� ⊆ + and D ∈ �:

(1) %� = @� > 0;

(2) @�

@�\{D}
>

{
1
2

Γ(D) ⊆ �;
2
3

otherwise.

Lemma 4.1 immediately follows from the claim as %(=
|Ω(|
2|� |

> 0 and

`((E is not a sink) = Pr
P

[
¬EE |

∧
D∈(
¬ED

]
=

%(∪{E}
%(

=
@(∪{E}
@(

>
1

2
,

where the last equality is by Item 1 and the inequality is by Item 2.
We then prove claim by induction on the size of �. �e base case is when � = ∅, and all items

directly hold as %∅ = @∅ = 1. For the induction step, we first prove Item 1. For � ⊆ + and D ∈ �, denote
Γ+ (D) = Γ(D) ∪ {D}. We have

Pr
P


ED ∧ ©­«

∧
9∈�\{D}

¬E 9
ª®¬

= Pr
P
[ED] Pr

P


©­«

∧
9∈�\{D}

¬E 9
ª®¬
| ED


= ?D Pr

P


©­«

∧
9∈�\Γ+ (D)

¬E 9
ª®¬
| ED


= ?D Pr

P


©­«

∧
9∈�\Γ+ (D)

¬E 9
ª®¬

= ?D · %�\Γ+ (D) ,

11

where in the second equality we used the fact that (-SFO instances are extremal. �us,

%� = %�\{D} − Pr
P


ED ∧ ©­«

∧
9∈�\{D}

¬E 9
ª®¬

= %�\{D} − ?D · %�\Γ+ (D) .(7)

Also, by separating independent sets according to whether they contain D or not, we have

@� =

∑
�∈Ind(�)

�⊆�

(−1) |� |
∏
8∈�

?8

=

∑
�∈Ind(�)
�⊆�\{D}

(−1) |� |
∏
8∈�

?8 − ?D ·
∑

�∈Ind(�)
�⊆�\Γ+ (D)

(−1) |� |
∏
8∈�

?8

=@�\{D} − ?D · @�\Γ+ (D) .(8)

Combining (7), (8), and the induction hypothesis, we have that %� = @� . For the positivity, let �∩Γ+ (D)
be listed as {D, D1, . . . , D:} for some : ≤ 3 (D). For 0 ≤ 8 ≤ : , let *8 = {D, D1, . . . , D8}. �en we have

@�\{D}
@�\Γ+ (D)

=

:∏
8=1

@�*8−1

@ (�*8−1)\{D8 }
> 2−: ≥ 2−3(D) = ?D,

where the first inequality is by Item 2 of the induction hypothesis. �us, @� > 0 by (8) and Item 1
holds.

It remains to show Item 2. Recall that � ∩ Γ+(D) is listed as {D, D1, . . . , D:}. For any 0 ≤ 8 ≤ : ,
Γ+ (D8) * � *8 because D ∈ Γ+ (D8) and D ∉ (� *8). �en by the induction hypothesis on the second
case of Item 2,

@ (�*8)\{D8 }
@�*8

<
3

2
.(9)

By (8), we have

(10)
@�

@�\{D}
= 1 − ?D ·

@�\Γ+ (D)
@�\{D}

= 1 − 2−3(D) ·
:−1∏
8=0

@ (�*8)\{D8 }
@�*8

(9)
> 1 − 2−3(D) ·

(
3

2

) :
.

If Γ(D) ⊆ �, : ≤ 3 (D) and as 3 (D) ≥ 3,

1 − 2−3(D) ·
(
3

2

) :
≥ 1 −

(
3

4

)3(D)
≥ 37

64
>

1

2
.

If Γ(D) * �, : ≤ 3 (D) − 1 and, again, as 3 (D) ≥ 3,

1 − 2−3(D) ·
(
3

2

):
≥ 1 − 2

3
·
(
3

4

)3(D)
≥ 23

32
>

2

3
.

Together with (10), this finishes the proof of Item 2 and the lemma. �

In the proof above, Item 1 holds mainly because the instance is extremal. For general non-extremal

cases, we would have %�

%�\{D}
≥ @�

@�\{D}
for � ⊆ + and D ∈ � instead.

4.2. Independence polynomial at negative weights. An interesting consequence of Item 1 in the
proof of Lemma 4.1 is that the number of SFOs can be computed using the independence polynomial
evaluated at negative activities. More specifically, similar to (6), let

@� (x) =
∑

�∈Ind(�)

∏
D∈�

GD,

where x is a vector of weights for each vertex. �en, @� (−p) = @+ where @+ is defined in (6), and
thus |Ω+ | = 2 |� |@� (−p), where p is the vector (?D)D∈+ of failure probabilities at the vertices. Namely
?D = 2−3(D) where 3 (D) is the degree of D.

�ere are more than one FPTASes [PR17, HSV18] that can efficiently approximate the independence
polynomial at negative weights. �ese algorithms work in the so-called Shearer’s region [She85]. To

12

explain Shearer’s region, let us abuse the notation slightly and extend the definition in (6) to a func-
tion @� (x) =

∑
�∈Ind(�) ,�⊆�

∏
D∈�

GD to take an input weight vector x. �en, a vector p is in Shearer’s

region if and only if @((−p) > 0 for all (⊆ + . Lemma 4.1 implies that the probability vector for
SFOs is in Shearer’s region. Moreover, we say a vector p has slack U if (1 + U)p is in Shearer’s re-
gion. For a vector x with slack U, the algorithm by Patel and Regts [PR17] Y-approximates @� (x)
in time (=/Y)$ (log 3/U) , and the algorithm by Harvey, Srivastava, and Vondrák [HSV18] runs in time

(=/(UY))$ (log 3/
√
U) , where 3 is the maximum degree of the graph. �ey do not recover �eorem 1.1

as the slack is a constant when constant degree vertices exist. If, in the meantime, some other vertices
have unbounded degrees, these algorithms run in quasi-polynomial time instead.

To see the last point, we construct a graph that contains vertices of unbounded degrees but with
constant slack for SFOs. Consider the wheel graph � , which consists of a cycle �= of length =, and a
central vertex E that connects to all vertices of �=. �us, ?E = 2−= and ?D = 1/8 for any D in �=. For
the cycle, as there are two SFOs, we see that @�=

(−1/4) = 2−=+1 (where we use Item 1 in the proof of
Lemma 4.1). �us, by (8),

@� (−2p) = @�=
(−1/4) − 2?E = 2−=+1 − 2 · 2−= = 0.

�erefore, the slack here is at most 1, despite the existence of a high degree vertex.
In summary, the existing FPTASes on the independence polynomial with negative weights do not

handle the mixture of high and low degree vertices well enough for the case of SFOs. However, it might
provide an alternative approach to derive FPTASes to count solutions to extremal instances of the local
lemma, which is worthy of further study.

5. Concluding remarks

Originally, Bubley and Dyer [BD97a] introduced sink-free orientations as a special case of read-
twice Sat. Here, “read-twice” means that each variable in a CNF formula appears exactly twice, and it
corresponds to an edge of the graph. Vertices of the graph correspond to clauses of the formula. �e
assignment of the edge is an orientation. �is represents that the variable appears with opposite signs
in the formula. In fact, Bubley and Dyer showed an FPRAS for all read-twice #Sat. It is natural to
ask if they admit FPTAS as well. �is question was first raised by Lin, Liu, and Lu [LLL14], who also
gave an FPTAS for monotone read-twice #Sat (which is equivalent to counting edge-covers in graphs).
�e monotone requirement means that the two appearances of any variable have the same sign. From
this perspective, our FPTAS is complementary to that of [LLL14]. However, as our techniques are
drastically different from [LLL14], to give an FPTAS for all read-twice #Sat, one may need to find a
way to combine these two techniques to handle mixed appearances of variables.

Another immediate question is to generalise our local sampler under the partial rejection sampling
framework. �e first step would be to be able to handle degree 2 vertices for SFOs, which breaks
our current submartingale argument. To go a bit further, a local sampler for all extremal instances
would yield an FPTAS for all-terminal reliability, whose existence is a major open problem. Also, for
all-terminal reliability, one may also a�empt to localise the near-linear time sampler in [CGZZ24].

Lastly, in addition to the discussion of Section 4.2, let us discuss another polynomial associated with
SFOs and its zero-freeness. Fix a SFO f. Let ?(G) = ∑<

8=0 �8G
8, where < is the number of edges, and

�8 indicates how many SFOs exist that agree with f in exactly 8 edges. It is easy to evaluate ?(0) = 1,
and ?(1) is the total number of SFOs. However, for a cycle, this polynomial becomes 1 + G<, which
can have a zero arbitrarily close to 1. �is zero defeats, at least, the standard application of Barvinok’s
method [Bar16, PR17]. Although one could exclude cycles by requiring the minimum degree to be
at least 3 (like we did in this paper), current techniques of proving zero-freeness seem to hinge on
handling all subgraphs. For example, to use Ruelle’s contraction like in [GLLZ21], one has to start
from small fragments of the graph and gradually rebuild it. �e obstacle then is to avoid starting from
or encountering cycles in the rebuilding process. Other methods, such as the recursion-based one
in [LSS19], require hereditary properties (similar to the so-called strong spatial mixing) that break in
cycles as well. It would be interesting to see if any of our arguments can help in proving zero-freeness
of the polynomial above.

13

Acknowledgement

We thank Guus Regts for helpful comments on an earlier version of this paper.

References

[AFF+25] Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang. Approxi-
mate counting for spin systems in sub-quadratic time. �eoretiCS, 4:3:1–3:27, 2025.

[AJ22] KonradAnand andMark Jerrum. Perfect sampling in infinite spin systems via strong spatial
mixing. SIAM J. Comput., 51(4):1280–1295, 2022.

[ALO20] Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-
dimensional expanders and applications to the hardcore model. In FOCS, pages 1319–1330.
IEEE, 2020.

[Bar16] Alexander I. Barvinok. Combinatorics and Complexity of Partition Functions, volume 30 of
Algorithms and combinatorics. Springer, 2016.

[BD97a] Russ Bubley and Martin E. Dyer. Graph orientations with no sink and an approximation
for a hard case of #SAT. In SODA, pages 248–257. ACM/SIAM, 1997.

[BD97b] Russ Bubley and Martin E. Dyer. Path coupling: A technique for proving rapid mixing in
markov chains. In FOCS, pages 223–231. IEEE Computer Society, 1997.

[BFH+16] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Ry-
bicki, Jukka Suomela, and Jara Ui�o. A lower bound for the distributed Lovász local lemma.
In STOC, pages 479–488. ACM, 2016.

[BG06] Antar Bandyopadhyay and David Gamarnik. Counting without sampling: new algorithms
for enumeration problems using statistical physics. In SODA, pages 890–899. ACM Press,
2006.

[BGK+07] Mohsen Bayati, David Gamarnik, DimitriyA. Katz, Chandra Nair, and Prasad Tetali. Simple
deterministic approximation algorithms for counting matchings. In STOC, pages 122–127.
ACM, 2007.

[CFG+24] Xiaoyu Chen, Weiming Feng, Heng Guo, Xinyuan Zhang, and Zongrui Zou. Deterministic
counting from coupling independence. arXiv, abs/2410.23225, 2024.

[CG24] Zongchen Chen and Yuzhou Gu. Fast sampling of b-matchings and b-edge covers. In SODA,
pages 4972–4987. SIAM, 2024.

[CGZZ24] Xiaoyu Chen, Heng Guo, Xinyuan Zhang, and Zongrui Zou. Near-linear time samplers for
matroid independent sets with applications. In APPROX/RANDOM, volume 317 of LIPIcs,
pages 32:1–32:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[CLV21] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of glauber dynamics: En-
tropy factorization via high-dimensional expansion. In STOC, page 1537–1550. ACM, 2021.

[CPP02] Henry Cohn, Robin Pemantle, and James Gary Propp. Generating a random sink-free ori-
entation in quadratic time. Electron. J. Comb., 9(1), 2002.

[DFK91] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time algorithm
for approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991.

[EL75] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős
on his 60th birthday), Vols. I, II, III, volume Vol. 10 of Colloq. Math. Soc. János Bolyai, pages
609–627. North-Holland, Amsterdam-London, 1975.

[FGW+23] Weiming Feng, Heng Guo, Chunyang Wang, Jiaheng Wang, and Yitong Yin. Towards de-
randomising Markov chain Monte Carlo. In FOCS, pages 1963–1990. IEEE, 2023.

[GH20] Heng Guo and Kun He. Tight bounds for popping algorithms. Random Struct. Algorithms,
57(2):371–392, 2020.

[GJ19] Heng Guo and Mark Jerrum. A polynomial-time approximation algorithm for all-terminal
network reliability. SIAM J. Comput., 48(3):964–978, 2019.

[GJ21] Heng Guo and Mark Jerrum. Approximately counting bases of bicircular matroids. Comb.
Probab. Comput., 30(1):124–135, 2021.

14

[GJL19] Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovász local
lemma. J. ACM, 66(3):Art. 18, 31, 2019.

[GL18] Heng Guo and Pinyan Lu. Uniqueness, spatialmixing, and approximation for ferromagnetic
2-spin systems. ACM Trans. Comput. �eory, 10(4):17:1–17:25, 2018.

[GLLZ21] Heng Guo, Chao Liao, Pinyan Lu, and Chihao Zhang. Zeros of holant problems: Locations
and algorithms. ACM Trans. Algorithms, 17(1):4:1–4:25, 2021.

[HSV18] Nicholas J. A. Harvey, Piyush Srivastava, and Jan Vondrák. Computing the independence
polynomial: from the tree threshold down to the roots. In SODA, pages 1557–1576. SIAM,
2018.

[HV17] Nicholas J. A. Harvey and Jan Vondrák. Short proofs for generalizations of the Lovász local
lemma: Shearer’s condition and cluster expansion. arXiv, abs/1711.06797, 2017.

[JS89] Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. Comput.,
18(6):1149–1178, 1989.

[JS93] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM J. Comput., 22(5):1087–1116, 1993.

[JVV86] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinato-
rial structures from a uniform distribution. �eoret. Comput. Sci., 43(2-3):169–188, 1986.

[KS11] Kashyap Babu Rao Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In STOC,
pages 235–244. ACM, 2011.

[LLL14] Chengyu Lin, Jingcheng Liu, and Pinyan Lu. A simple FPTAS for counting edge covers. In
SODA, pages 341–348. SIAM, 2014.

[LLY13] Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin systems.
In SODA, pages 67–84. SIAM, 2013.

[LSS19] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. A deterministic algorithm for count-
ing colorings with 2-Delta colors. In FOCS, pages 1380–1404. IEEE Computer Society, 2019.

[Moi19] Ankur Moitra. Approximate counting, the Lovász local lemma, and inference in graphical
models. J. ACM, 66(2):10:1–10:25, 2019.

[MT10] Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.
J. ACM, 57(2):11, 2010.

[PR17] Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algorithms for
partition functions and graph polynomials. SIAM J. Comput., 46(6):1893–1919, 2017.

[She85] James B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985.
[Val79a] Leslie G. Valiant. �e complexity of computing the permanent. �eor. Comput. Sci., 8:189–

201, 1979.
[Val79b] Leslie G. Valiant. �e complexity of enumeration and reliability problems. SIAM J. Comput.,

8(3):410–421, 1979.
[Wei06] Dror Weitz. Counting independent sets up to the tree threshold. In STOC, pages 140–149.

ACM, 2006.
[Wil96] David Bruce Wilson. Generating random spanning trees more quickly than the cover time.

In STOC, pages 296–303. ACM, 1996.

15

	1. Introduction
	1.1. Our contribution and technique overview

	2. A local sampler for sink-free orientations
	3. Analysis of the local sampler
	4. Applications of the local sampler
	4.1. Proof of the marginal lower bound
	4.2. Independence polynomial at negative weights

	5. Concluding remarks
	Acknowledgement
	References

