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Abstract—We give a fast algorithm for sampling
uniform solutions of general constraint satisfaction
problems (CSPs) in a local lemma regime. The expected
running time of our algorithm is near-linear in 𝑛 and a
fixed polynomial in Δ, where 𝑛 is the number of variables
and Δ is the max degree of constraints. Previously, up to
similar conditions, sampling algorithms with running
time polynomial in both 𝑛 and Δ, only existed for the
almost atomic case, where each constraint is violated
by a small number of forbidden local configurations.

Index Terms—sampling, constraint satisfaction prob-
lem, Lovász Local Lemma

I. Introduction

Constraint satisfaction problems (CSPs) are one of

the most fundamental objects in computer science. A

CSP is described by a collection of constraints defined

on a set of variables. Formally, an instance of constraint

satisfaction problem, called a CSP formula, is denoted

by Φ = (𝑉 ,Q, C). Here, 𝑉 is a set of 𝑛 = |𝑉 | variables;
Q �

⊗
𝑣∈𝑉 𝑄𝑣 is a product space of all assignments of

variables, where each 𝑄𝑣 is a finite domain of size 𝑞𝑣 �
|𝑄𝑣 | ≥ 2 over where the variable 𝑣 ranges; and C gives a

collection of local constraints, such that each 𝑐 ∈ C is a

constraint function 𝑐 :
⊗

𝑣∈vbl(𝑐) 𝑄𝑣 → {True,False}
defined on a subset of variables, denoted by vbl(𝑐) ⊆ 𝑉 .

An assignment 𝒙 ∈ Q is called satisfying for Φ if

Φ(𝒙) �
∧
𝑐∈C

𝑐
(
𝒙vbl(𝑐)

)
= True.

A full version of the paper is available at https://arxiv.org/abs/2204.
01520.
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The followings are some key parameters of a CSP

formula Φ = (𝑉 ,Q, C):

• domain size 𝑞 = 𝑞Φ � max
𝑣∈𝑉

|𝑄𝑣 |;

• width 𝑘 = 𝑘Φ � max
𝑒∈C

|vbl(𝑐) |;
• constraint degree Δ = ΔΦ where

ΔΦ � max
𝑐∈C

|{𝑐 ′ ∈ C | vbl(𝑐) ∩ vbl(𝑐 ′) ≠ ∅}|;

• violation probability 𝑝 = 𝑝Φ � max
𝑐∈C
P[¬𝑐], where

P denotes the law for the uniform assignment, in

which each 𝑣 ∈ 𝑉 draws its evaluation from 𝑄𝑣

uniformly and independently at random.

The famous Lovász Local Lemma (LLL) [1] provides a

sufficient criterion for the satisfiability of Φ. Specifically,

a satisfying assignment for a CSP formula Φ exists if

e𝑝Δ ≤ 1. (1)

Due to a lower bound of Shearer [2], such “LLL condi-

tion” for the existence of satisfying solution is essentially

tight if only knowing 𝑝 and Δ. On the other hand, the

algorithmic or constructive LLL seeks to find a solution

efficiently. A major breakthrough was the Moser-Tardos

algorithm [3], which guarantees to find a satisfying

assignment efficiently under the LLL condition in (1).

The sampling LLL. We are concerned with the prob-

lem of sampling Lovász Local Lemma, which has drawn

considerable attention in recent years [4]–[15]. In the

context of CSP, it seeks to provide an efficient sampling

algorithm for (nearly) uniform generation of satisfy-

ing assignments for the CSPs in an LLL-like regime.

This sampling LLL problem is closely related to the

problem of estimating the volume of solution spaces

or the partition functions of statistical physics systems,

and is motivated by fundamental tasks, including the
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probabilistic inferences in graphical models [5] and the

network reliability problems [4], [16], [17].
This problem of sampling LLL turns out to be com-

putationally more challenging than the traditional al-

gorithmic LLL, which requires constructing an arbi-

trary satisfactory assignment, not necessarily following

the correct distribution. For example, when used as a

sampling algorithm, the Moser-Tardos algorithm can

only guarantee correct sampling on restrictive classes of

CSPs [4]. Due to the computational lower bounds shown

in [14], [18], a strengthened LLL condition with 𝑐 ≥ 2:

𝑝Δ𝑐 � 1, (2)

is necessary for the tractability of sampling LLL, even

restricted to typical specific sub-classes of CSPs, such as

CNF or hypergraph coloring. Here � ignores the lower-

order terms and the constant factor.
In a seminal work of Moitra [5], a very innovative

algorithm was given for sampling almost uniform 𝑘-

CNF solutions assuming an LLL condition 𝑝Δ60 � 1.
This sampling algorithm was based on deterministic

approximate counting by solving linear programs on

properly factorized formulas and has a running time of

𝑛poly(𝑘,Δ) . This LP-based approach was later extended to

hypergraph coloring [6] and random CNF formulas [7],

and finally in a work of Jain, Pham and Vuong [12] to all

CSPs satisfying a substantially improved LLL condition

𝑝Δ7 � 1. All these deterministic approximate counting

based algorithms suffered from an 𝑛poly(𝑘,Δ) time cost.
Historically, rapidly mixing Markov chains have been

the canonical sampling algorithms, and often have near-

linear time efficiency. However, for sampling LLL, there

used to be a fundamental barrier for Markov chains.

That is, despite the ubiquity of solutions, the solution

space of CSPs may be highly disconnected through the

transition of local Markov chains.
This barrier of disconnectivity was circumvented in

a breakthrough of Feng et al. [9], in which a rapidly

mixing projected random walk was simulated efficiently

on a subset of variables constructed using the mark-

ing/unmarking strategy invented in [5]. Assuming an

LLL condition 𝑝Δ20 � 1, this new algorithm could

generate an almost uniform 𝑘-CNF solution using a time

cost within poly(𝑘,Δ) ·𝑛1.0001, which is close to linear in

the number of variables 𝑛. By observing that this mark-

ing/unmarking of variables was, in fact a specialization

in the Boolean case of compressing variables’ states, this

Markov chain based fast sampling approach was general-

ized in [10] to CSPs beyond the Boolean domain, specif-

ically, to all almost atomic CSPs (which we will explain

later), assuming an LLL condition 𝑝Δ350 � 1. This bound

was remarkably improved to 𝑝Δ7.04 � 1 in another work

of Jain, Pham and Vuong [11] through a clever witness-

tree-like information percolation analysis of the mixing

time, which was also used later to support a perfect

sampler through the coupling from the past (CFTP)

in [13] with a further improved condition 𝑝Δ5.71 � 1.
All these fast algorithms for sampling LLL are re-

stricted to the (almost) atomic CSPs, in which each

constraint 𝑐 is violated by exactly one (or very few)

forbidden assignment(s) on vbl(𝑐).

Challenges for general CSP. New techniques are

needed for fast sampling LLL for general CSPs. All

existing fast algorithms for sampling LLL relied on

some projection of the solution space to a much smaller

space where the barrier of disconnectivity could be

circumvented because the images of the projection might

collide and were well connected. In order to efficiently

simulate the random walk on the projected space and

to recover a random solution from a random image, one

would hope that the CSP formula were well “factorized”

into small clusters most of the time because many con-

straints had already been satisfied for sure given the cur-

rent image, which was indeed the case for fast sampling

LLL for atomic CSPs [9]–[11], [13]. But for general non-

atomic CSPs, it may no longer be the case, because now

a bad event (violation of a constraint) may be highly non-

elementary, and hence is no longer that easy to avoid

cleanly after projection, which breaks the factorization.

It is possible that the non-atomicity of general CSPs

might have imposed greater challenges to the sampling

LLL than to its constructive counterpart. To see this, note

that general CSPs can be simulated by atomic ones: by

replacing each general constraint 𝑐 having 𝑁 forbidden

assignments on vbl(𝑐), with 𝑁 atomic constraints on the

same vbl(𝑐) each forbidding one assignment. Such simu-

lation would increase the constraint degree Δ by a factor

of at most 𝑁 and also decrease the violation probability

𝑝 by a factor of 𝑁 . For the classic LLL condition (1)

where 𝑝 and Δ are homogeneous, this would not change

the LLL condition; but the regime for the sampling LLL

captured by (2) would be significantly reduced, since

there 𝑝 and Δ are necessarily not homogeneous due to

the lower bounds in [14], [18]. This situation seems to

suggest that the non-atomicity of general CSPs might

impose bigger challenges to the sampling LLL than to

the existential/constructive LLL.

Indeed, prior to our work, it was not known for

general CSPs with unbounded width 𝑘 and degree

Δ, whether the sampling problem is polynomial-time

tractable under an LLL condition like (2).
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A. Our results

In this paper, we answer the above open question

positively. We give a new algorithm that departs from

all prior fast samplers based on Markov chains and

achieves, for the first time, a fast sampling of almost

uniform satisfying solutions for general CSPs in a local

lemma regime.
As in the case of algorithmic LLL [3], [19], we assume

an abstraction of constraint evaluations, because arbi-

trary constraint functions defined on a super-constant

number of variables can be highly nontrivial to express

and evaluate. Specifically, we assume the following

evaluation oracle for checking whether a constraint is

already satisfied by a partially specified assignment.

Assumption 1 (evaluation oracle). There is an eval-

uation oracle for Φ = (𝑉 ,Q, C) such that given any

constraint 𝑐 ∈ C, any assignment 𝜎 ∈ QΛ �
⊗

𝑣∈Λ 𝑄𝑣

specified on a subset Λ ⊆ vbl(𝑐) of variables, the oracle

answers whether 𝑐 is already satisfied by 𝜎 , i.e. 𝑐 (𝜏) =
True for all 𝜏 ∈ Qvbl(𝑐) that 𝜏Λ = 𝜎Λ.

For specific classes of CSPs, e.g. 𝑘-CNF or hypergraph

coloring, such an oracle is easy to realize.
Assuming such an oracle for constraint evaluations,

we give the following fast, almost uniform sampler

for general CSPs in a local lemma regime. Recall the

parameters 𝑞, 𝑘, 𝑝,Δ of a CSP formula Φ.

Theorem I.1 (informal). There is an algorithm such

that given as input any 𝜀 ∈ (0, 1) and any CSP formula
Φ = (𝑉 ,Q, C) with 𝑛 variables satisfying

𝑞2 · 𝑘 · 𝑝 · Δ7 ≤
1

150e3 , (3)

the algorithm terminates within poly(𝑞, 𝑘,Δ) · 𝑛 log
(𝑛
𝜀

)
time in expectation and outputs an almost uniform sample

of satisfying assignments for Φ within 𝜀 total variation
distance.

The formal statement of the theorem is in Theorem V.1

(for termination and correctness of sampling) and in

Theorem VI.3 (for efficiency of sampling). The condition

in (3) becomes 𝑝Δ7+𝑜 (1) � 1 when 𝑝 ≤ (𝑞𝑘)−𝜔 (1) ,
while a typical case is usually given by a much smaller

𝑝 ≤ 𝑞−Ω (𝑘) . The previous best bound for sampling

general CSP solutions was that 𝑞3𝑘𝑝Δ7 < 𝑐 for a small

constant 𝑐 , achieved by the deterministic approximate

counting based algorithm in [12] whose running time

was (𝑛/𝜀)poly(𝑘,Δ,log𝑞) .
Let 𝑍 be the total number of satisfying assignments

for Φ. A 𝑍 is called an 𝜀-approximation of 𝑍 if (1 −
𝜀)𝑍 ≤ 𝑍 ≤ (1 + 𝜀)𝑍 . By routinely going through the

non-adaptive annealing process in [9], the approximate

sampler in Theorem I.1 can be used as a black-box to

give for any 𝜀 ∈ (0, 1) an 𝜀-approximation of 𝑍 in time

poly (𝑞, 𝑘,Δ) · 𝑂̃
(
𝑛2𝜀−2)

with high probability.

1) Perfect sampler: The evaluation oracle in Assump-

tion 1 in fact checks the sign of P[¬𝑐 | 𝜎], the probability

that a constraint 𝑐 is violated given a partially specified

assignment 𝜎 . If further this probability can be estimated

efficiently, then the sampling in Theorem I.1 can be

made perfect, where the output sample follows exactly

the target distribution.

Theorem I.2 (informal). For the input class of CSPs, if

there is such an FPTAS for violation probability:

• for any constraint 𝑐 ∈ C, any assignment 𝜎 ∈ QΛ

specified on a subset Λ ⊆ vbl(𝑐), and 0 < 𝜀 < 1, an
𝜀-approximation of P[¬𝑐 | 𝜎] is returned determinis-
tically within poly(𝑞, 𝑘, 1/𝜀) time,

then the algorithm in Theorem I.1 returns a perfect sample

of uniform satisfying assignment within poly(𝑞, 𝑘,Δ) · 𝑛
time in expectation under the same condition (3).

The formal statement of the theorem is in Theorem V.1

(for termination and correctness of sampling) and in The-

orem VI.1 (for efficiency of sampling). In fact, we prove

this perfect sampler first, and then realize the FPTAS

assumed in Theorem I.2 using Monte Carlo experiments,

which introduces a bounded bias to the sampling and

gives us the approximate sampler claimed in Theorem I.1.

For concrete classes of CSPs defined by simple local

constraints, it is no surprise to see that the probability

P[¬𝑐 | 𝜎] almost always has an easy-to-compute closed-

form expression, in which case we have a perfect sam-

pler without assuming the oracles in Assumption 1 and

in Theorem I.2.

The followings are two examples of non-atomic CSPs

which admit linear-time perfect samplers.

Example I.3 (𝛿-robust 𝑘-SAT). The 𝑛 variables are

Boolean, each clause contains exactly 𝑘 literals, and a

clause is satisfied if and only if at least 𝛿𝑘 of its literals

have the outcome True.

• For 𝛿-robust 𝑘-SAT with variable degree 𝑑 (each

variable appears in at most 𝑑 clauses) satisfying

0 < 𝛿 <
1
2

, 𝑘 ≥
32 ln𝑘 + 28 ln𝑑 + 40

(1 − 2𝛿)2
,

a perfect sample of uniform satisfying solutions is

returned within expected time poly(𝑘,𝑑) · 𝑛 .

Example I.4 (𝛿-robust hypergraphs 𝑞-coloring). Each

vertex is colored with one of the 𝑞 colors, each hyperedge
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is 𝑘-uniform and is satisfied if and only if there are no

(1 − 𝛿)𝑘 vertices with the same color.

• For 𝑘-uniform hypergraphs on 𝑛 vertices with maxi-

mum vertex degree 𝑑 satisfying

(1 − 𝛿)𝑘 ≥ 15, 𝑞 ≥
7𝑑

7
(1−𝛿 )𝑘−3 · (6.1)

1
(1−𝛿 )

(1 − 𝛿)1.25 ,

a perfect sample of uniform satisfying coloring is

returned within expected time poly(𝑞, 𝑘, 𝑑) · 𝑛.

2) Marginal sampler: The core component of our sam-

pling algorithm is a marginal sampler for drawing from

marginal distributions. Let 𝜇 = 𝜇Φ denote the uniform

distribution over all satisfying assignments for Φ, and

for each 𝑣 ∈ 𝑉 , let 𝜇𝑣 denote the marginal distribution

at 𝑣 induced by 𝜇.

Theorem I.5 (informal). There is an algorithm such

that given as input any 𝜀 ∈ (0, 1), any CSP formula

Φ = (𝑉 ,Q, C) satisfying (3), and any 𝑣 ∈ 𝑉 , the algorithm
returns a random value 𝑥 ∈ 𝑄𝑣 distributed approxi-

mately as 𝜇𝑣 within total variation distance 𝜀, within
poly (𝑞, 𝑘,Δ, log(1/𝜀)) time in expectation.

This marginal sampler is also perfect under the same

assumption as in Theorem I.2. Another byproduct of

this marginal sampler is the following algorithm for

probabilistic inference.

Theorem I.6 (informal). There is an algorithm such that

given as input any 𝜀, 𝛿 ∈ (0, 1), any CSP formula Φ =
(𝑉 ,Q, C) satisfying (3), and any 𝑣 ∈ 𝑉 , the algorithm re-

turns for every 𝑥 ∈ 𝑄𝑣 an 𝜀-approximation of the marginal
probability 𝜇𝑣 (𝑥) within poly (𝑞, 𝑘,Δ, 1/𝜀, log(1/𝛿)) time
with probability at least 1 − 𝛿 .

The above two theorems are formally restated and

proved in [20, Section 6].

By a self-reduction, the sampling and inference al-

gorithms in Theorems I.5 and I.6 remain to hold for

the marginal distributions 𝜇𝜎𝑣 conditional on a feasible

partially specified assignment 𝜎 , as long as the LLL

condition (3) is satisfied by the new instance Φ𝜎 obtained

from pinning 𝜎 onto Φ.

Both the above algorithms for marginal sampling and

probabilistic inference are local algorithms whose

costs are independent of 𝑛. Previously, in order to

simulate or estimate the marginal distribution of a vari-

able, it was often necessary to generate a full assignment

on all 𝑛 variables, or at least pay no less than that. One

might have asked the following natural question:

Can these locally defined sampling or inference

problems be solved at a local cost?

However, decades have passed, and only recently has

such a novel local algorithm been discovered for

marginal distributions in infinite spin systems [21],

which is also our main source of inspiration.

B. Technique overview

As we have explained before, non-atomicity of con-

straints causes a barrier for the current Markov chain

based algorithms [9]–[11], [13], [15]. There is another

family of sampling algorithms, which we call “resam-

pling based” algorithms [4], [22]–[25]. These algorithms

use resampling of variables to fix the assignment until

it follows the right distribution, morally like the Moser-

Tardos algorithm, and they are not as affected by dis-

connectivity of solution space as Markov chains, but

here a principle to ensure the correct sampling is to

resample the variables that the algorithm has observed

and conditioned on, which also causes trouble on non-

atomic constraints, because to ensure such constraints

are satisfied, the algorithm has to observe too many

variables, whose resampling would cancel the progress

of the algorithm.

We adopt a new idea of sampling, which we call the

recursive marginal sampler. It is somehow closer to the

resampling based algorithms than to the Markov chains,

but thanks to its recursive nature, the algorithm avoids

excessive resampling. This algorithm is inspired by a

recent novel algorithm of Anand and Jerrum [21] for

perfectly sampling in infinite spin systems, where a core

component is such a marginal sampler that can draw a

spin according to its marginal distribution.

Now let us consider the uniform distribution 𝜇 over all

satisfying assignments of a CSP formula Φ = (𝑉 ,Q, C),
and its marginal distribution 𝜇𝑣 at a variable 𝑣 ∈ 𝑉 ,

say over domain 𝑄𝑣 = [𝑞]. To sample from this 𝜇𝑣 over

[𝑞], an idea is to exploit the so-called “local uniformity”

property [26], which basically says that 𝜇𝑣 should not

be far from a uniform distribution over [𝑞] in total

variation distance when Φ satisfies some local lemma

condition. Therefore, a uniform sample from [𝑞] already

gives a coarse sample of 𝜇𝑣 . It remains to boost such a

coarse sampler to a sampler with arbitrary precision.

By the local uniformity, there exists a 𝜃 < 1
𝑞 close

enough to 1
𝑞 , such that

∀𝑥 ∈ [𝑞], 𝜇𝑣 (𝑥) ≥ 𝜃 . (4)

The marginal distribution 𝜇𝑣 can then be divided as

𝑞𝜃 · U + (1 − 𝑞𝜃 ) · D,
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where U is the uniform distribution over [𝑞] and D

gives a distribution of “overflow” mass such that:

∀𝑥 ∈ [𝑞], D(𝑥) =
𝜇𝑣 (𝑥) − 𝜃

1 − 𝑞𝜃
.

Sampling from 𝜇𝑣 then can follow this strategy: with

probability 𝑞𝜃 , the algorithm falls into the “zone of local

uniformity” and returns a uniform sample from U; with

probability 1 − 𝑞𝜃 , the algorithm falls into the “zone of

indecision” and has to draw a sample from this overflow

distribution D, which can be done by constructing a

Bernoulli factory that accesses 𝜇𝑣 as an oracle. But wait,

if we had such an oracle for 𝜇𝑣 in the first place, why

would sampling from 𝜇𝑣 even be a problem?

The above “chicken or egg” paradox is somehow

resolved by a simple observation: if enough many other

variables had already been sampled correctly, say with

outcome 𝑋 , then assuming a strong enough LLL condi-

tion, there is a good chance that the resulting formula

Φ𝑋 was “factorized” into small clusters, from where a

standard rejection sampling on Φ𝑋 would be efficient

for sampling from 𝜇𝑋𝑣 , and overall from 𝜇𝑣 . Therefore,

the sampling strategy is now corrected as: after falling

into the “zone of indecision” and before trying to draw

from the overflow distribution D, the algorithm picks

another variable 𝑢 whose successful sampling might help

factorize Φ, and recursively apply the marginal sampler

at 𝑢 to draw from 𝑢’s current marginal distribution first.

The only loose end now is that the LLL condition is not

self-reducible, meaning it is not invariant under arbitrary

pinning. We adopt the idea of “freezing” constraints used

in [12] to guide the algorithm to pick variables for sam-

pling. The LLL condition is replaced by a more refined

invariant condition that guarantees for each variable

picked for sampling, the same local uniformity as in (4)

to persist throughout the algorithm, and also guarantees

a good chance of factorization while there are no other

variables to pick. To bound the fast convergence of the

recursive sampler, in [21] the strategy was to show that

the branching process given by the recursion tree always

has decaying offspring number in expectation given the

worst-case boundary condition, which is not true here.

Instead, we apply a more average-case style analysis.

Interestingly, some of our analysis and the LLL condition

resemble those in [12] for a deterministic approximate

counting algorithm with time complexity 𝑛poly(𝑘,Δ,log𝑞) .

II. Notations for CSP

We recall the definition of CSP formula Φ = (𝑉 ,Q, C)
in Section I. We use Ω = ΩΦ to denote the set of all

satisfying assignments of Φ, and use 𝜇 = 𝜇Φ to denote

the uniform distribution over Ω. Recall that P denotes

the law for the uniform product distribution over Q. For

𝐶 ⊆ C, denote vbl(𝐶) �
⋃
𝑐∈𝐶 vbl(𝑐); and for Λ ⊆ 𝑉 ,

denote QΛ �
⊗

𝑣∈Λ 𝑄𝑣 . We introduce a notation for

partial assignments.

Definition II.1 (partial assignment). Given a CSP for-

mula Φ = (𝑉 ,Q, C), define:

Q∗ �
⊗
𝑣∈𝑉

(𝑄𝑣 ∪ {★,�� }) ,

where ★ and �� are two special symbols not in any 𝑄𝑣 .

Each 𝜎 ∈ Q∗ is called a partial assignment.

In a partial assignment 𝜎 ∈ Q∗, each variable 𝑣 ∈ 𝑉
is classified as follows:

• 𝜎 (𝑣) ∈ 𝑄𝑣 means that 𝑣 is accessed by the algorithm

and assigned with the value 𝜎 (𝑣) ∈ 𝑄𝑣 ;

• 𝜎 (𝑣) = ★ means that 𝑣 is just accessed by the

algorithm but unassigned yet with a value in 𝑄𝑣 ;

• 𝜎 (𝑣) = �� means that 𝑣 is unaccessed by the algo-

rithm and hence unassigned with any value.

Furthermore, we use Λ(𝜎) ⊆ 𝑉 and Λ+(𝜎) ⊆ 𝑉 to

respectively denote the sets of assigned and accessed

variables in a partial assignment 𝜎 ∈ Q∗, that is:

Λ(𝜎) � {𝑣 ∈ 𝑉 | 𝜎 (𝑣) ∈ 𝑄𝑣},Λ
+(𝜎) � {𝑣 ∈ 𝑉 | 𝜎 (𝑣) ≠ �� }.

Given any partial assignment 𝜎 ∈ Q∗ and variable

𝑣 ∈ 𝑉 , we further denote by 𝜎𝑣←𝑥 the partial assignment

obtained from modifying 𝜎 by replacing 𝜎 (𝑣) with 𝑥 ∈
𝑄𝑣 ∪ {★,�� }.

A partial assignment 𝜏 ∈ Q∗ is said to extend a partial

assignment 𝜎 ∈ Q∗ if Λ(𝜎) ⊆ Λ(𝜏), Λ+(𝜎) ⊆ Λ+(𝜏), and

𝜎, 𝜏 agree with each other over all variables in Λ(𝜎). A

partial assignment 𝜎 ∈ Q∗ is said to satisfy a constraint

𝑐 ∈ C if 𝑐 is satisfied by all full assignments 𝜏 ∈ Q that

extend 𝜎 . A partial assignment 𝜎 ∈ Q∗ is called feasible

if there is a satisfying assignment 𝜏 ∈ Ω that extends 𝜎 .
Given any feasible partial assignment 𝜎 ∈ Q∗ and

any 𝑆 ⊆ 𝑉 , we use 𝜎𝑆 to denote
⊗

𝑣∈𝑆 𝜎 (𝑣) and

𝜇𝜎𝑆 to denote the marginal distribution induced by 𝜇
on 𝑆 conditional on 𝜎 . For each 𝜏 ∈ Q𝑆 , we have

𝜇𝜎𝑆 (𝜏) = Pr𝑋∼𝜇 [𝑋𝑆 = 𝜏 | ∀𝑣 ∈ Λ(𝜎), 𝑋 (𝑣) = 𝜎 (𝑣)]. We

further write 𝜇𝜎𝑣 = 𝜇𝜎
{𝑣 }

. Similar notation is used for

the law P for the uniform product distribution over Q.

For 𝜎 ∈ Q∗ and any event 𝐴 ⊆ Q, we have P[𝐴 | 𝜎] =
Pr𝑋 ∈Q [𝑋 ∈ 𝐴 | ∀𝑣 ∈ Λ(𝜎), 𝑋 (𝑣) = 𝜎 (𝑣)].

III. The Sampling Algorithm

We give our main algorithm for sampling almost

uniform satisfying assignments for a CSP formula. Our

presentation uses notations defined in Section II.
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A. The main sampling algorithm

Our main sampling algorithm takes as input a CSP

formula Φ = (𝑉 ,Q, C) with domain size 𝑞 = 𝑞Φ, width

𝑘 = 𝑘Φ, constraint degree Δ = ΔΦ, and violation proba-

bility 𝑝 = 𝑝Φ, where the meaning of these parameters

are as defined in Section I.
We suppose that the 𝑛 = |𝑉 | variables are enumerated

as 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} in an arbitrary order. The CSP

formula Φ = (𝑉 ,Q, C) is presented to the algorithm by

the evaluation oracle in Assumption 1. Also assume that

given any 𝑐 ∈ C (or 𝑣 ∈ 𝑉 ), the vbl(𝑐) (or {𝑐 ∈ C | 𝑣 ∈
vbl(𝑐)}) can be retrieved.

The main algorithm (Algorithm 1) is the same as

the main sampling frameworks in [6], [12]. A partial

assignment 𝑋 ∈ Q∗ is maintained, initially as the empty

assignment 𝑋 = ��𝑉 .

1) In the 1st phase, at each step it adaptively picks

(in a predetermined order) a variable 𝑣 that has

enough “freedom” because it is not involved in any

easy-to-violate constraint given the current 𝑋 , and

replaces 𝑋 (𝑣) with a random value drawn by a

subroutine MarginSample according to the correct

marginal distribution 𝜇𝑋𝑣 .

2) When no such variable with enough freedom re-

mains, the formula is supposed to be “factorized”

enough into small clusters and the algorithm enters

the 2nd phase, from where the partial assignment

constructed in the 1st phase is completed to a uni-

form random satisfying assignment by a standard

RejectionSampling subroutine.

A key threshold 𝑝 ′ for the violation probability is

fixed as below:

𝑝 ′ =
(
18e2𝑞2𝑘Δ4

)−1
, (5)

which satisfies 𝑝 ′ > 𝑝 = 𝑝Φ, assuming the LLL condition

in (3).
For the ease of exposition, we assume an oracle for

approximately deciding whether a constraint becomes

too easy to violate given the current partial assignment.

Assumption 2. There is an oracle such that given any

partial assignment 𝜎 ∈ Q∗ and any constraint 𝑐 ∈ C,

the oracle distinguishes between the two cases: P[¬𝑐 |
𝜎] > 𝑝 ′ and P[¬𝑐 | 𝜎] < 0.99𝑝 ′, and answers arbitrarily

and consistently if otherwise. That is the answer to the

undefined case P[¬𝑐 | 𝜎] ∈ [0.99𝑝 ′, 𝑝 ′] can be either

“yes” or “no” but remains the same for the same 𝜎vbl(𝑐) .

Such an oracle is clearly implied by the FPTAS for

violation probability assumed in Theorem I.2 and will be

explicitly realized in Section VI. For now, with respect to

such an oracle, the classes of easy-to-violate constraints

and their involved variables are defined as follows.

Definition III.1 (frozen and fixed). Assume Assump-

tion 2. Let 𝜎 ∈ Q∗ be a partial assignment.

• A constraint 𝑐 ∈ C is called 𝜎-frozen if it is reported

P[¬𝑐 | 𝜎] > 𝑝 ′ by the oracle in Assumption 2.

Denote by C𝜎frozen the set of all 𝜎-frozen constraints:

C𝜎frozen � {𝑐 ∈ C | 𝑐 is reported by the oracle

to satisfy P[¬𝑐 | 𝜎] > 𝑝 ′}.

• A variable 𝑣 ∈ 𝑉 is called 𝜎-fixed if 𝑣 is accessed

in 𝜎 or is involved in some 𝜎-frozen constraint.

Denote by 𝑉 𝜎
fix the set of all 𝜎-fixed variables:

𝑉 𝜎
fix � Λ+(𝜎) ∪

⋃
𝑐∈C𝜎

frozen

vbl(𝑐).

Similar ideas of freezing appeared in previous works on

sampling and algorithmic LLL [12], [27]

Remark III.2 (one-sided error for frozen/fixed decision).

By the property of the oracle in Assumption 2, any

constraint 𝑐 ∈ C with P[¬𝑐 | 𝜎] > 𝑝 ′ must be in C𝜎frozen,

and any variable 𝑣 ∈ 𝑉 involved in such a constraint

must be in 𝑉 𝜎
fix; conversely, any 𝜎-frozen constraint

𝑐 ∈ C𝜎frozen must have P[¬𝑐 | 𝜎] ≥ 0.99𝑝 ′ and any

unaccessed 𝜎-fixed variable 𝑣 ∈ 𝑉 𝜎
fix must be involved in

at least one of such constraints.

Algorithm 1: The sampling algorithm

Input: a CSP formula Φ = (𝑉 ,Q, C);
Output: a uniform random satisfying assignment

𝑋 ∈ ΩΦ;

1 𝑋 ← ��𝑉 ;

2 for 𝑖 = 1 to 𝑛 do
3 if 𝑣𝑖 is not 𝑋 -fixed then
4 𝑋 (𝑣𝑖 ) ← MarginSample(Φ, 𝑋, 𝑣𝑖 );

5 𝑋𝑉 \Λ(𝑋 ) ← RejectionSampling(Φ, 𝑋,𝑉 \ Λ(𝑋 ));
6 return 𝑋 ;

The following invariant is satisfied in the for loop in

Algorithm 1 (formally proved in Lemma V.3). The cor-

rectness of the MarginSample subroutine is guaranteed

by this invariant.

Condition III.3 (invariant for MarginSample). The

following holds for the input tuple (Φ, 𝜎, 𝑣):

• Φ = (𝑉 ,Q, C) is a CSP formula, 𝜎 ∈ Q∗ is a feasible

partial assignment, and 𝑣 ∈ 𝑉 is a variable;
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• 𝑣 is not 𝜎-fixed and 𝜎 (𝑣) = �� , and for all 𝑢 ∈ 𝑉 ,
𝜎 (𝑢) ∈ 𝑄𝑢 ∪ {�� };

• P[¬𝑐 | 𝜎] ≤ 𝑝 ′𝑞 for all 𝑐 ∈ C.

The correctness of Algorithm 1 follows from the

correctness of MarginSample and RejectionSampling

for sampling from the correct marginal distributions,

which is formally proved in Theorem V.1.
In fact, the sampling in Algorithm 1 is perfect. It will

only become approximate after the oracle in Assump-

tion 2 realized by a Monte Carlo program that may bias

the sampling.

B. The rejection sampling

We first introduce RejectionSampling, which is a stan-

dard procedure. Our rejection sampling takes advantages

of simplification and decomposition of a CSP formula.
A simplification of Φ = (𝑉 ,Q, C) under partial assign-

ment 𝜎 ∈ Q∗, denoted by Φ𝜎 = (𝑉 𝜎 ,Q𝜎 , C𝜎 ), is a new

CSP formula such that 𝑉 𝜎 = 𝑉 \Λ(𝜎) and Q𝜎 = Q𝑉 \Λ(𝜎) ,
and the C𝜎 is obtained from C by:

1) removing all the constraints that have already been

satisfied by 𝜎 ;

2) for the remaining constraints, replacing the vari-

ables 𝑣 ∈ Λ(𝜎) with their values 𝜎 (𝑣).

It is easy to see that 𝜇Φ𝜎 = 𝜇𝜎
𝑉 \Λ(𝜎)

for the uniform

distribution 𝜇Φ𝜎 over satisfying assignments of Φ𝜎 .
A CSP formula Φ = (𝑉 ,Q, C) can be naturally repre-

sented as a (multi-)hypergraph 𝐻Φ, where each variable

𝑣 ∈ 𝑉 corresponds to a vertex in 𝐻Φ and each constraint

𝑐 ∈ C corresponds to a hyperedge vbl(𝑐) in 𝐻Φ. We

slightly abuse the notation and write 𝐻Φ = (𝑉 , C).
Let 𝐻𝑖 = (𝑉𝑖 , C𝑖 ) for 1 ≤ 𝑖 ≤ 𝐾 denote all 𝐾 ≥ 1

connected components in 𝐻Φ, and Φ𝑖 = (𝑉𝑖 ,Q𝑉𝑖 , C𝑖 )
their formulas. Obviously Φ = Φ1 ∧ Φ2 ∧ · · · ∧ Φ𝐾 with

disjoint Φ𝑖 , and 𝜇Φ is the product of all 𝜇Φ𝑖 . Also 𝜇𝑆 on

a subset of variables 𝑆 ⊆ 𝑉 is determined only by those

components with 𝑉𝑖 intersecting 𝑆 .
Our rejection sampling algorithm for drawing from

a marginal distribution 𝜇𝜎𝑆 is given in Algorithm 2.

The correctness of this algorithm is folklore. We state

without proof.

Theorem III.4. On any input (Φ, 𝜎, 𝑆) as specified in
Algorithm 2, RejectionSampling terminates with proba-

bility 1, and upon termination it returns an assignment
𝑋𝑆 ∈ Q𝑆 distributed as 𝜇𝜎𝑆 .

C. The marginal sampler

We now introduce the the core part of our sampling

algorithm, the MarginSample subroutine. This procedure

is a “marginal sampler”: it can draw a random value for

Algorithm 2: RejectionSampling(Φ, 𝜎, 𝑆)

Input: a CSP formula Φ = (𝑉 ,Q, C), a feasible

partial assignment 𝜎 ∈ Q∗, and a subset

𝑆 ⊆ 𝑉 \Λ(𝜎) of unassigned variables in 𝜎 ;

Output: an assignment 𝑋𝑆 ∈ Q𝑆 distributed as 𝜇𝜎𝑆 ;

1 find {𝐻𝜎
𝑖 = (𝑉 𝜎

𝑖 , C𝜎𝑖 )} | 1 ≤ 𝑖 ≤ 𝐾, 𝐻𝜎
𝑖 ∩𝑆 ≠ ∅}, i.e.,

all the connected components in 𝐻Φ𝜎 which in-

tersect 𝑆 where Φ𝜎 denotes the simplification of

Φ under 𝜎 ;

2 for 1 ≤ 𝑖 ≤ 𝐾 do
3 repeat

4 generate 𝑋𝑉𝜎
𝑖
∈ Q𝑉𝜎

𝑖
uniformly and indep-

5 endently at random;

6 until all the constraints in C𝜎𝑖 are satisfied;

7 return𝑋𝑆 where𝑋 is the concatenation of all 𝑋𝑉𝜎
𝑖
;

a variable 𝑣 ∈ 𝑉 according to its marginal distribution

𝜇𝜎𝑣 . Our marginal sampling algorithm is inspired by a

recent novel sampling algorithm of Anand and Jerrum

for infinite spin systems [21].
For each variable 𝑣 ∈ 𝑉 , we suppose that an arbitrary

order is assumed over all values in 𝑄𝑣 ; we use 𝑞𝑣 � |𝑄𝑣 |

to denote the domain size of 𝑣 and fix the parameters

𝜃𝑣, 𝜃 as 𝜃𝑣 � 1
𝑞𝑣
− 𝜂 − 𝜁 and 𝜃 � 1

𝑞 − 𝜂 − 𝜁 where{
𝜂 = (1 − e𝑝 ′𝑞)−Δ − 1
𝜁 =

(
8e𝑞𝑘Δ3)−1 (6)

Note that 𝜁 < 1
𝑞−𝜂 is guaranteed by the LLL condition

in (3), and hence 𝜃𝑣, 𝜃 > 0.
The MarginSample subroutine for drawing from a

marginal distribution 𝜇𝜎𝑣 is given in Algorithm 3.

Algorithm 3: MarginSample(Φ, 𝜎, 𝑣)

Input: a CSP formula Φ = (𝑉 ,Q, C), a feasible

partial assignment 𝜎 ∈ Q∗, and a variable

𝑣 ∈ 𝑉 ;

Output: a random 𝑥 ∈ 𝑄𝑣 distributed as 𝜇𝜎𝑣 ;
1 choose 𝑟 ∈ [0, 1) uniformly at random;

2 if 𝑟 < 𝑞𝑣 · 𝜃𝑣 then // 𝑟 falls into
the zone of local uniformity

3 return the �𝑟/𝜃𝑣�-th value in 𝑄𝑣 ;

4 else // 𝑟 falls into
the zone of indecision

5 return MarginOverflow(Φ, 𝜎𝑣←★, 𝑣);

An invariant satisfied by Algorithm 3 guarantees that

𝜃𝑣 always lower bounds the marginal probability with
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gap 𝜁 . This is formally proved in Section IV by a “local

uniformity” property (Corollary IV.3).

Proposition III.5. Assuming Condition III.3 for the input

(Φ, 𝜎, 𝑣), it holds that min
𝑥 ∈𝑄𝑣

𝜇𝜎𝑣 (𝑥) ≥ 𝜃𝑣 + 𝜁 .

Therefore, the function D constructed below is a well-

defined distribution over 𝑄𝑣 :

∀𝑥 ∈ 𝑄𝑣, D(𝑥) �
𝜇𝜎𝑣 (𝑥) − 𝜃𝑣
1 − 𝑞𝑣 · 𝜃𝑣

. (7)

Consider the following thought experiment. Partition

[0, 1) into (𝑞𝑣 + 1) intervals 𝐼1, 𝐼2 . . . , 𝐼𝑞𝑣 and 𝐼 ′, where

𝐼𝑖 = [(𝑖 − 1)𝜃𝑣, 𝑖𝜃𝑣) for 1 ≤ 𝑖 ≤ 𝑞𝑣 are of equal size

𝜃𝑣 , and 𝐼 ′ = [𝑞𝑣𝜃𝑣, 1) is the remaining part. We call⋃𝑞𝑣
𝑖=1 𝐼𝑖 = [0, 𝑞𝑣𝜃𝑣) the “zone of local uniformity” and

𝐼 ′ = [𝑞𝑣𝜃𝑣, 1) the “zone of indecision”.

Drawing from 𝜇𝜎𝑣 can then be simulated as: first draw-

ing a uniform random 𝑟 ∈ [0, 1), if 𝑟 < 𝑞𝑣𝜃𝑣 , i.e. it falls

into the “zone of local uniformity”, then returning the 𝑖-
th value in 𝑄𝑣 if 𝑟 ∈ 𝐼𝑖 ; if otherwise 𝑟 ∈ 𝐼 ′, i.e. it falls into

the “zone of indecision”, then returning a random value

drawn from the above D. It is easy to verify that the

generated sample is distributed as 𝜇𝜎𝑣 . And this is exactly

what Algorithm 3 is doing, assuming that the subroutine

MarginOverflow(Φ, 𝜎𝑣←★, 𝑣) correctly draws from D.

D. Recursive sampling for margin overflow

The goal of the MarginOverflow subroutine is to draw

from the distribution D which is computed from the

marginal distribution 𝜇𝜎𝑣 as defined in (7).

Now suppose that we are given access to an oracle

for drawing from 𝜇𝜎𝑣 (such an oracle can be realized

by RejectionSampling(Φ, 𝜎, {𝑣}) in Algorithm 2). Then,

drawing from D that is a linear function of 𝜇𝜎𝑣 , by

accessing an oracle for drawing from 𝜇𝜎𝑣 , can be resolved

using existing approaches of Bernoulli factory [28]–[30].

This sounds silly because if such oracle for 𝜇𝜎𝑣 were

efficient we would have been using it to output a sample

for 𝜇𝜎𝑣 in the first place, which is exactly the reason

why we ended up trying to draw from D.

Nevertheless, such Bernoulli factory for sampling

from D may serve as the basis of a recursion, where

sufficiently many variables with enough “freedom”

would have been sampled successfully in their zones

of local uniformity during the recursion, and hence

the remaining CSP formula would have been “factor-

ized” into small connected components, in which case

an oracle for 𝜇𝜎𝑣 would be efficient to realize by the

RejectionSampling(Φ, 𝜎, {𝑣}), and the Bernoulli factory

for D could apply.

We define a class of variables that are candidates for

sampling with priority in the recursion.

Definition III.6 (★-influenced variables). Let 𝜎 ∈ Q∗

be a partial assignment. Let 𝐻𝜎 = 𝐻Φ𝜎 = (𝑉 𝜎 , C𝜎 ) be

the hypergraph for simplification Φ𝜎 . Let 𝐻𝜎
fix be the

sub-hypergraph of 𝐻𝜎 induced by 𝑉 𝜎 ∩𝑉 𝜎
fix.

• Let 𝑉 𝜎
★ ⊆ 𝑉 𝜎 ∩𝑉 𝜎

fix be the set of vertices belong to

the connected components in 𝐻𝜎
fix that contain any

𝑣 with 𝜎 (𝑣) = ★.

• Let 𝑉 𝜎
★-inf be the vertex boundary of 𝑉 𝜎

★ in 𝐻𝜎 where

𝑉 𝜎
★-inf �

{
𝑢 ∈ 𝑉 𝜎 \𝑉 𝜎

★ | ∃𝑐 ∈ C𝜎 , 𝑣 ∈ 𝑉 𝜎
★ : 𝑢, 𝑣 ∈ vbl(𝑐)

}
.

• Define NextVar (𝜎) as{
𝑣𝑖 ∈ 𝑉 𝜎

★-inf with smallest 𝑖 if 𝑉 𝜎
★-inf ≠ ∅,

⊥ otherwise.
(8)

With this construction of NextVar (·), we describe

the MarginOverflow subroutine in Algorithm 4.

Algorithm 4: MarginOverflow(Φ, 𝜎, 𝑣)

Input: a CSP formula Φ = (𝑉 ,Q, C), a feasible

partial assignment 𝜎 ∈ Q∗, and a variable

𝑣 ∈ 𝑉 ;

Output: a random 𝑥 ∈ 𝑄𝑣 distributed as

D � 1
(1−𝑞𝑣 ·𝜃𝑣 ) (𝜇

𝜎
𝑣 − 𝜃𝑣);

1 𝑢 ← NextVar (𝜎) where NextVar (𝜎) is defined

as in (8);

2 if 𝑢 ≠⊥ then
3 choose 𝑟 ∈ [0, 1) uniformly at random;

4 if 𝑟 < 𝑞𝑢 · 𝜃𝑢 then // 𝑟 falls into
the zone of local uniformity

5 𝜎 (𝑢) ← the �𝑟/𝜃𝑢�-th value in 𝑄𝑢 ;
6 else // 𝑟 falls into

the zone of indecision
7 𝜎 (𝑢) ← MarginOverflow(Φ, 𝜎𝑢←★, 𝑢);

/* Lines 4 to 7 together draw
𝜎 (𝑢) according to 𝜇𝜎𝑢←★

𝑢 */
8 return MarginOverflow(Φ, 𝜎, 𝑣);
9 else

10 sample a random 𝑥 ∈ 𝑄𝑣 according to

D � 1
(1−𝑞𝑣 ·𝜃𝑣 ) (𝜇

𝜎
𝑣 − 𝜃𝑣) using a Bernoulli

factory that accesses

RejectionSampling(Φ, 𝜎, {𝑣}) as an oracle;

11 return 𝑥 ;

Basically, a variable 𝑢 is a good candidate for sampling

if it currently has enough “freedom” (since 𝑢 is not

𝜎-fixed) and can “influence” the variables that we are

154

Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2023 at 11:23:31 UTC from IEEE Xplore.  Restrictions apply. 



trying to sample in the recursion (which are marked by

★) through a chain of constraints in the simplification

of Φ under the current 𝜎 . Such variables are enumerated

by NextVar (𝜎).
The idea of Algorithm 4 is simple. In order to draw

from the overflow distribution D for a variable 𝑣 ∈ 𝑉 : if

there is another candidate variable 𝑢 = NextVar (𝜎) that

still has enough freedom so its sampling might be easy,

and also is relevant to the sampling at 𝑣 or its ancestors,

we try to sample 𝑢’s marginal value first (hopefully

within its zone of local uniformity and compensated by

a recursive call for drawing from its margin overflow);

and if there is no such candidate variable to sample first,

we finally draw from D using the Bernoulli factory.

The following invariant is satisfied by the MarginOver-

flow subroutine called within the MarginSample sub-

routine and the MarginOverflow itself (formally proved

in Lemma V.3).

Condition III.7 (invariant for MarginOverflow). The

following holds for the input tuple (Φ, 𝜎, 𝑣):

• Φ = (𝑉 ,Q, C) is a CSP formula, 𝜎 ∈ Q∗ is a feasible

partial assignment, and 𝑣 ∈ 𝑉 is a variable;

• 𝜎 (𝑣) = ★;

• P[¬𝑐 | 𝜎] ≤ 𝑝 ′𝑞 for all 𝑐 ∈ C.

The following marginal lower bound follows from the

“local uniformity” property (Corollary IV.3) in the same

way as in Proposition III.5 and is formally proved in

Section IV.

Proposition III.8. Assuming Condition III.7 for the input

(Φ, 𝜎, 𝑣), it holds that min
𝑥 ∈𝑄𝑣

𝜇𝜎𝑣 (𝑥) ≥ 𝜃𝑣 + 𝜁 and for 𝑢 =

NextVar (𝜎), if 𝑢 ≠⊥ then it also holds that min
𝑥 ∈𝑄𝑢

𝜇𝜎𝑢 (𝑥) ≥

𝜃𝑢 + 𝜁 .

The Bernoulli factory used in Algorithm 4 is achieved

by a combination of existing constructions (to be specific,

the Bernoulli factory for subtraction in [28], composed

with the linear Bernoulli factory in [29] and the Bernoulli

race in [30]), given access to an oracle for drawing

from the marginal distribution 𝜇𝜎𝑣 , which is realized

by RejectionSampling(Φ, 𝜎, {𝑣}) in Algorithm 2. The de-

scription of the Bernoulli factory and the proof of its cor-

rectness and efficiency can be found in [20, Appendix A].

IV. Preliminary on Lovász Local Lemma

The following is the asymmetric Lovász Local Lemma

stated in the context of CSP.

Theorem IV.1 ([1]). Given a CSP formula Φ = (𝑉 ,Q, C),
if there is a function 𝑥 : C → (0, 1) such that:

∀𝑐 ∈ C : P[¬𝑐] ≤ 𝑥 (𝑐)
∏
𝑐′ ∈C

vbl(𝑐)∩vbl(𝑐′)≠∅

(1 − 𝑥 (𝑐 ′)), (9)

then

P

[∧
𝑐∈C

𝑐

]
≥

∏
𝑐∈C

(1 − 𝑥 (𝑐)) > 0.

When the condition (9) is satisfied, the probability

of any event in the uniform distribution 𝜇 over all

satisfying assignments can be well approximated by the

probability of the event in the product distribution. This

was observed in [26]:

Theorem IV.2 ([26]). Given a CSP formula Φ = (𝑉 ,Q, C),
if (9) holds, then for any event 𝐴 that is determined by

the assignment on a subset of variables vbl (𝐴) ⊆ 𝑉 ,

Pr
𝜇
[𝐴] = P

[
𝐴 |

∧
𝑐∈C

𝑐

]
≤ P[𝐴]

∏
𝑐∈C

vbl(𝑐)∩vbl(𝐴)≠∅

(1 − 𝑥 (𝑐))−1,

where 𝜇 denotes the uniform distribution over all satisfying

assignments of Φ and P denotes the law of the uniform

product distribution over Q.

The following “local uniformity” property is a straight-

forward corollary to Theorem IV.2 by setting 𝑥 (𝑐) = e𝑝
for every 𝑐 ∈ C (and the lower bound is calculated by

𝜇𝑣 (𝑥) = 1 −
∑
𝑦∈𝑄𝑣\{𝑥 } 𝜇𝑣 (𝑦)).

Corollary IV.3 (local uniformity). Given a CSP formula

Φ = (𝑉 ,Q, C), if e𝑝Δ < 1, then for any variable 𝑣 ∈ 𝑉
and any value 𝑥 ∈ 𝑄𝑣 , it holds that

1
𝑞𝑣
−

(
(1 − e𝑝)−Δ − 1

)
≤ 𝜇𝑣 (𝑥) ≤

1
𝑞𝑣
+

(
(1 − e𝑝)−Δ − 1

)
.

Recall 𝑝 ′ defined in (5) and 𝜃𝑣, 𝜁 , 𝜂 defined in (6). The

following corollary implied by the “local uniformity”

property simultaneously proves Proposition III.5 and

Proposition III.8.

Corollary IV.4. For any CSP formula Φ = (𝑉 ,Q, C) and
any partial assignment 𝜎 ∈ Q∗, if

∀𝑐 ∈ C, P[¬𝑐 | 𝜎] ≤ 𝑝 ′𝑞,

then 𝜎 is feasible, and for any 𝑣 ∈ 𝑉 \ Λ(𝜎) and any
𝑥 ∈ 𝑄𝑣 ,

𝜃𝑣 + 𝜁 ≤ 𝜇𝜎𝑣 (𝑥) ≤ 𝜃𝑣 + 2𝜂 + 𝜁 .
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V. Correctness of Sampling

In this section, we prove the correctness of Algo-

rithm 1. All theorems in this section assume the setting

of parameters in (5) and (6), and the oracles in Assump-

tion 1 and Assumption 2.

Theorem V.1. On any input CSP formula Φ = (𝑉 ,Q, C)
satisfying (3), Algorithm 1 terminates with probability 1,
and returns a uniform random satisfying assignment of

Φ upon termination.

Remark V.2 (perfectness of sampling). Note that the

sampling in above theorem is perfect: Algorithm 1 re-

turns a sample that is distributed exactly as the uniform

distribution 𝜇 over all satisfying assignments of Φ. Later

in Section VI, the oracle assumed in Assumption 2 will

be realized by a Monte Carlo routine, which will further

generalize the sampling algorithm to assume nothing

beyond an evaluation oracle, in a price of a bounded

bias introduced to the sampling.

The following lemma guarantees that the invariants

in Condition III.3 and Condition III.7 are satisfied respec-

tively by the inputs to Algorithm 3 and Algorithm 4.

Lemma V.3. During the execution of Algorithm 1 on a

CSP formula Φ = (𝑉 ,Q, C) satisfying (3):

1) whenever MarginSample(Φ, 𝑋, 𝑣) is called, Condi-
tion III.3 is satisfied by its input (Φ, 𝑋, 𝑣);

2) whenever MarginOverflow(Φ, 𝜎, 𝑣) is called, Condi-
tion III.7 is satisfied by its input (Φ, 𝜎, 𝑣).

Before proving this lemma, we show that these invari-

ants can already imply the correctness of MarginSample,

which is critical for the correctness of the main sampling

algorithm (Algorithm 1).

Theorem V.4. The following holds for Algorithm 3 and

Algorithm 4:

1) Assuming Condition III.3,MarginSample(Φ, 𝜎, 𝑣) ter-
minates with probability 1, and it returns a random
value 𝑥 ∈ 𝑄𝑣 distributed as 𝜇𝜎𝑣 upon termination.

2) Assuming Condition III.7, MarginOverflow(Φ, 𝜎, 𝑣)
terminates with probability 1, and upon termination
it returns a random value 𝑥 ∈ 𝑄𝑣 distributed as the

D � 𝜇𝜎𝑣 −𝜃𝑣
1−𝑞𝑣 ·𝜃𝑣 defined in (7).

The proof of Theorem V.4 is left to [20, Section 5].

We then verify the invariant conditions claimed in

Lemma V.3. Before that, we formally define the sequence

of partial assignments that evolve in Algorithm 1.

Definition V.5 (partial assignments in Algorithm 1).

Let 𝑋 0, 𝑋 1, . . . , 𝑋𝑛 ∈ Q∗ denote the sequence of partial

assignments, where 𝑋 0 = ��𝑉 and for every 1 ≤ 𝑖 ≤ 𝑛,

𝑋 𝑖 is the partial assignments 𝑋 in Algorithm 1 after the

𝑖-th iteration of the for loop in Lines 1-4.

Lemma V.6. For the 𝑋 0, 𝑋 1, . . . , 𝑋𝑛 in Definition V.5, it

holds for all 0 ≤ 𝑖 ≤ 𝑛 that 𝑋 𝑖 is feasible and

∀𝑐 ∈ C, P[¬𝑐 | 𝑋 𝑖 ] ≤ 𝑝 ′𝑞.

Lemma V.7. Assume Condition III.7 for (Φ, 𝜎, 𝑣). For
any 𝑢 ∈ 𝑉 , if 𝑢 is not 𝜎-fixed, then (Φ, 𝜎𝑢←𝑎, 𝑣) and
(Φ, 𝜎𝑢←★, 𝑢) satisfy Condition III.7 for any 𝑎 ∈ 𝑄𝑢 ∪ {★}.

Both proofs of Lemma V.6 and Lemma V.7 can be

found in [20, Section 5]. The invariant of Condition III.3

for MarginSample stated in Lemma V.3-(1) follows eas-

ily from Lemma V.6. The invariant of Condition III.7

for MarginOverflow stated in Lemma V.3-(2) follows

from Lemmas V.3-(1) and V.7. Because by (Φ, 𝜎, 𝑣)
satisfies Condition III.3, we have (Φ, 𝜎𝑣←★, 𝑣) satisfies

Condition III.7. In addition, during the execution of

MarginOverflow(Φ, 𝜏, 𝑣) where 𝜏 = 𝜎𝑣←★, the algorithm

will only change an input partial assignment 𝜏 to 𝜏𝑢←𝑎
for those vertices 𝑢 that are not 𝜏-fixed 𝑢 and for

𝑎 ∈ 𝑄𝑢 ∪ {★}. Lemma V.3 is proved.

Combining Lemma V.3 and Theorem V.4, we prove the

correctness of MarginSample (Algorithm 3), assuming

the LLL condition in (3) for the input CSP in the main

algorithm (Algorithm 1).

The correctness of RejectionSampling (Algorithm 2)

has already been established in Theorem III.4.

The correctness of the main sampling algorithm (Al-

gorithm 1) then follows from the correctness of these

two main subroutines, with details left to [20, Section 5].

VI. Efficiency of Sampling

In this section, we show the efficiency of Algorithm 1

under the LLL condition in (3).

Algorithm 1 assumes accesses to the following oracles

for a class of constraints C, both of which receive as

input a constraint 𝑐 ∈ C and a partial assignment 𝜎 ∈ Q∗

upon queries:

• Eval(𝑐, 𝜎): the evaluation oracle in Assumption 1,

which decides whether P[𝑐 | 𝜎] = 1, that is,

whether 𝑐 is already satisfied by 𝜎 ;

• Frozen(𝑐, 𝜎): the oracle for frozen decision in As-

sumption 2, which distinguishes between the two

cases P[¬𝑐 | 𝜎] > 𝑝 ′ and P[¬𝑐 | 𝜎] < 0.99𝑝 ′, where

𝑝 ′ is the threshold defined in (5), and answers

arbitrarily and consistently if otherwise.

The complexity of our sampling algorithm is measured

in terms of the queries to the two oracles Eval(·) and
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Frozen(·), and the computation costs. We prove the

following theorem.

Theorem VI.1. Given as input a CSP formula Φ =
(𝑉 ,Q, C) satisfying (3), Algorithm 1 in expectation costs

𝑂 (𝑞2𝑘2Δ10𝑛) queries to Eval(·), 𝑂 (𝑘Δ7𝑛) queries to

Frozen(·), and 𝑂 (𝑞3𝑘3Δ10𝑛) in computation.

Together with the correctness of Algorithm 1 stated

in Theorem V.1, this proves the main theorem for perfect

sampling (Theorem I.2), since any query to the oracle

Frozen(·) can be resolved in poly(𝑞, 𝑘) time assuming

the FPTAS for violation probability in Theorem I.2.

Remark VI.2 (Monte Carlo realization of frozen

decision). The oracle Frozen(·) can be realized proba-

bilistically through the Monte Carlo method. Upon each

query on a constraint 𝑐 and a partial assignment 𝜎 , the

two extreme cases P[¬𝑐 | 𝜎] > 𝑝 ′ and P[¬𝑐 | 𝜎] <
0.99𝑝 ′ can be distinguished with high probability (1−𝛿)
by independently testing for 𝑂 ( 1

𝑝′ log 1
𝛿 ) times whether

the constraint 𝑐 is satisfied by a randomly generated

assignment over vbl(𝑐) consistent with 𝜎 . We further

apply a memoization to guarantee the consistency of

the oracle as required in Assumption 2. The resulting al-

gorithm is called Algorithm 1’ and is formally described

in Section VI-C.

This Monte Carlo realization of the Frozen(·) oracle

introduces a bounded bias to the resulting sample and

turns the perfect sampler in Theorem VI.1 to an approx-

imate sampler Algorithm 1’, which no longer assumes

any nontrivial machinery beyond evaluating constraints.

Theorem VI.3. Given as input an 𝜀 ∈ (0, 1) and a

CSP formula Φ satisfying (3), Algorithm 1’ in expecta-

tion costs 𝑂
(
𝑞2𝑘2Δ11𝑛 log

( Δ𝑛
𝜀

) )
queries to Eval(·) and

𝑂
(
𝑞3𝑘3Δ11𝑛 log

( Δ𝑛
𝜀

) )
in computation, and outputs within

𝜀 total variation distance from the output of Algorithm 1

on input Φ.

Together with the correctness of Algorithm 1 stated in

Theorem V.1, this proves the main theorem (Theorem I.1)

of the paper.

A notation for complexity bound: Throughout the

section, we adopt the following abstract notation for

any complexity bound. A complexity bound is expressed

as a formal bi-variate linear function:

𝑡 (x, y) = 𝛼 · x + 𝛽 · y + 𝛾, (10)

where 𝛼 represents the number of queries to Eval(·), 𝛽
represents the number of queries to Frozen(·), and 𝛾
represents the computation costs.

A. Efficiency of MarginSample

We now prove the following upper bound on the

expected running time of MarginSample (Algorithm 3),

which is expressed in the form of (10)

Let 𝑇MS (Φ, 𝜎, 𝑣) be the random variable that repre-

sents the complexity of MarginSample(Φ, 𝜎, 𝑣) when

Condition III.3 is satisfied by (Φ, 𝜎, 𝑣).

Theorem VI.4. Assume 8e𝑝Δ3 ≤ 0.99𝑝 ′ and let

𝑋 0, 𝑋 1, . . . , 𝑋𝑛 be the random sequence in Definition V.5.

Assume the convention that 𝑇MS (Φ, 𝑋 𝑡−1, 𝑣𝑡 ) = 0 when

𝑣𝑡 is 𝑋 𝑡−1-fixed. For any 1 ≤ 𝑡 ≤ 𝑛, we have

E
[
𝑇MS (Φ, 𝑋 𝑡−1, 𝑣𝑡 )

]
is no more than

𝑂
(
𝑞2𝑘2Δ10

)
· x + 480𝑘Δ7 · y +𝑂

(
𝑞3𝑘3Δ10

)
,

where expectation is taken over both 𝑋 𝑡−1 and the ran-
domness of MarginSample algorithm.

The proof of Theorem VI.4 is left to [20, Section 6.5].

B. Efficiency of RejectionSampling

Here, we focus on 𝑋 = 𝑋𝑛 , the partial assignment

obtained after all 𝑛 iterations of the for loop in Line 2 of

Algorithm 1, and passed to the RejectionSampling (Algo-

rithm 2) as input, as formally defined in Definition V.5.

For partial assignment 𝜎 ∈ Q∗, let 𝑇Rej (𝜎) be

the random variable representing the complexity of

RejectionSampling(Φ, 𝜎,𝑉 \ Λ(𝜎)) in form of (10).

We show the following bound on the expectation

of 𝑇Rej(𝑋 ) on the random partial assignment 𝑋 = 𝑋𝑛 ,

whose proof can be found in [20, Section 6.6].

Theorem VI.5. Assume 8e𝑝Δ3 ≤ 0.99𝑝 ′,where 𝑝 ′ is
fixed as in (5).

E
[
𝑇Rej (𝑋 )

]
≤ 10Δ5𝑛 · x +𝑂 (𝑞𝑘Δ5𝑛),

where expectation is taken over both 𝑋 and the random-

ness of RejectionSampling algorithm.

C. Efficiency of the main sampling algorithm

The proof of Theorem VI.1 then follows from com-

bining Theorem VI.4 and Theorem VI.5. The proof of

Theorem VI.3 follows by setting up Algorithm 1’ that

does the followings. Set the parameters as:

𝛿 = 0.005 and 𝑁 =

⌈
ln

(
4 × 103𝑘Δ7𝑛𝜀−2)

0.33𝑝 ′𝛿2

⌉
.

Algorithm 1’ simply executes Algorithm 1 on input

Φ, with the oracle Frozen(·) replaced by the following

explicitly implemented Monte Carlo subroutine:
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• Given as input any constraint 𝑐 ∈ C and any partial

assignment 𝜎 ∈ Q∗, repeat for 𝑁 times:

– generate an assignment 𝑌 ∈ Qvbl(𝑐) on vbl(𝑐)
uniformly at random consistent with 𝜎 ;

– check whether 𝑐 (𝑌 ) = True by querying

Eval(𝑐, 𝑌 );

• let 𝑍 be the number of times within 𝑁 trials that

𝑐 (𝑌 ) = False, and return 𝐼 [𝑍/𝑁 > 0.995𝑝 ′].

The detailed proof can be found in [20, Section 6.7].
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[1] P. Erdős and L. Lovász, “Problems and results on 3-chromatic
hypergraphs and some related questions,” Infinite and finite
sets, volume 10 of Colloquia Mathematica Societatis János Bolyai,
pp. 609–628, 1975.

[2] J. B. Shearer, “On a problem of Spencer,” Combinatorica, vol. 5,
no. 3, pp. 241–245, 1985.

[3] R. A. Moser and G. Tardos, “A constructive proof of the general
Lovász local lemma,” J. ACM, vol. 57, no. 2, p. 11, 2010.

[4] H. Guo, M. Jerrum, and J. Liu, “Uniform sampling through the
Lovász local lemma,” J. ACM, vol. 66, no. 3, pp. Art. 18, 31, 2019.

[5] A. Moitra, “Approximate counting, the Lovász local lemma, and
inference in graphical models,” J. ACM, vol. 66, no. 2, pp. 10:1–
10:25, 2019. (Conference version in STOC’17).

[6] H. Guo, C. Liao, P. Lu, and C. Zhang, “Counting hypergraph
colorings in the local lemma regime,” SIAM Journal on Computing,
vol. 48, no. 4, pp. 1397–1424, 2019.

[7] A. Galanis, L. A. Goldberg, H. Guo, and K. Yang, “Counting
solutions to random CNF formulas,” in ICALP, vol. 168 of LIPIcs,
pp. 53:1–53:14, 2020.

[8] D. G. Harris, “New bounds for the moser-tardos distribution,”
Random Structures & Algorithms, vol. 57, no. 1, pp. 97–131, 2020.

[9] W. Feng, H. Guo, Y. Yin, and C. Zhang, “Fast sampling and
counting 𝑘-sat solutions in the local lemma regime,” Journal of
the ACM (JACM), vol. 68, no. 6, pp. 1–42, 2021.

[10] W. Feng, K. He, and Y. Yin, “Sampling constraint satisfaction
solutions in the local lemma regime,” in Proceedings of the
53rd Annual ACM SIGACT Symposium on Theory of Computing,
pp. 1565–1578, 2021.

[11] V. Jain, H. T. Pham, and T. D. Vuong, “On the sampling lovász
local lemma for atomic constraint satisfaction problems,” CoRR,
vol. abs/2102.08342, 2021.

[12] V. Jain, H. T. Pham, and T. D. Vuong, “Towards the sampling
lovász local lemma,” in 62nd IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS 2021, Denver, CO, USA, February
7-10, 2022, pp. 173–183, IEEE, 2021.

[13] K. He, X. Sun, and K. Wu, “Perfect sampling for (atomic) lovász
local lemma,” CoRR, vol. abs/2107.03932, 2021.

[14] A. Galanis, H. Guo, and J. Wang, “Inapproximability of counting
hypergraph colourings,” arXiv preprint arXiv:2107.05486, 2021.

[15] W. Feng, H. Guo, and J. Wang, “Improved bounds for randomly
colouring simple hypergraphs,” arXiv preprint arXiv:2202.05554,
2022.

[16] H. Guo and M. Jerrum, “A polynomial-time approximation
algorithm for all-terminal network reliability,” SIAM J. Comput.,
vol. 48, no. 3, pp. 964–978, 2019.

[17] H. Guo and K. He, “Tight bounds for popping algorithms,”
Random Structures Algorithms, vol. 57, no. 2, pp. 371–392, 2020.
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