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Variables:  with finite domains  for each 


Constraints:  with each  defined on 


satisfied, not satisfied }


CSP solution:  assignment  s.t. all constraints are satisfied


V = {v1, v2, …, vn} Qv v ∈ V

𝒞 = {c1, c2, …, cm} c ∈ 𝒞 𝗏𝖻𝗅(c) ⊆ V

c : ⨂
v∈𝗏𝖻𝗅(c)

Qv → {

X ∈ ⨂
v∈V

Qv

Constraint Satisfaction Problem
Φ = (V, Q, 𝒞)
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Decision: Can we efficiently decide if  has a solution?


Search: Can we efficiently find a solution of ?


Sampling: Can we efficiently sample an (almost) uniform random solution of ?

Φ

Φ

Φ



Example: -CNF




, 

 for each 


Solution: an assignment such that each clause (constraint) 
evaluates to 


k
V = {x1, x2, …, xn}
𝒞      |Ci | = k
Qv ∈ {𝖳𝗋𝗎𝖾 𝖥𝖺𝗅𝗌𝖾 v ∈ V

𝖳𝗋𝗎𝖾

x1

x2

x5

x4

x3

x6

𝖳𝗋𝗎𝖾

𝖥𝖺𝗅𝗌𝖾

Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x5 ∨ ¬x6) ∧ (x3 ∨ ¬x4 ∨ ¬x5)

Example: hypergraph -coloring

-uniform hypergraph 


color set  for each 

Solution: an assignment such that no hyperedge 
(constraint) is monochromatic


q
k H = (V, ℰ)

[q] v ∈ V



Variable framework 
• each  draws from  uniformly and independently at random


• product distribution 


Parameters 
•  violation probability  

•  constraint degree   

 

v ∈ V Qv

𝒫

p = max
c∈𝒞

Pr
𝒫

[¬c]

Δ = max
c∈𝒞

|{c′￼ ∈ 𝒞 ∣ 𝗏𝖻𝗅(c) ∩ 𝗏𝖻𝗅(c′￼) ≠ Ø} |

Lovász Local Lemma
Φ = (V, Q, 𝒞)



Variable framework 
• each  draws from  uniformly and independently at random


• product distribution 


Parameters 
•  violation probability  

•  constraint degree   

 

v ∈ V Qv

𝒫

p = max
c∈𝒞

Pr
𝒫

[¬c]

Δ = max
c∈𝒞

|{c′￼ ∈ 𝒞 ∣ 𝗏𝖻𝗅(c) ∩ 𝗏𝖻𝗅(c′￼) ≠ Ø} |

epΔ ≤ 1
Lovász Local Lemma

[Erdos, Lovasz ’75]

A CSP solution exists

and can be efficiently found!Algorithmic Lovász Local Lemma


[Moser, Tardos ’10]

Lovász Local Lemma
Φ = (V, Q, 𝒞)



Sampling Lovász Local Lemma
Sampling LLL

Input: a CSP formula  under LLL-like conditions 

Output: an (almost) uniform satisfying solution of 

Φ = (V, Q, 𝒞) pΔc ≲ 1
Φ

[BGGGS19,GGW22]:

NP-hard if !pΔ2 ≳ 1



Sampling Lovász Local Lemma
Sampling LLL

Input: a CSP formula  under LLL-like conditions 

Output: an (almost) uniform satisfying solution of 

Φ = (V, Q, 𝒞) pΔc ≲ 1
Φ

Approximate counting CSP solutions (Counting LLL) Inference in probabilistic graphical models

Gibbs distribution : uniform distribution over all solutions to  

Inference: 

μ Φ
𝖯𝗋

X∼μ
[Xvi

= ⋅ ∣ XS = xs]

Applications:

Almost Uniform

Sampling 

Approximate

Counting

self-reduction
[Jerrum, Valiant, Vazirani 1986]

adaptive simulated annealing
[Štefankovič, Vempala, Vigoda 2009]

[BGGGS19,GGW22]:

NP-hard if !pΔ2 ≳ 1



Work Instance Condition Complexity Technique

Guo, Jerrum, Liu’16 CSP with large

constraint intersections partial rejection samplingpΔ2 ≲ 1,s ≥ min(log Δ, k /2) 𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ n

pΔ2 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ n log nHermon, Sly, Zhang’16 monotone -CNFk MCMC
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polynomial running time

only if  k, q, Δ = O(1)
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pΔ20 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ Õ(n1.001)

pΔ350 ≲ 1/N

pΔ5.713 ≲ 1/N

𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ Õ(n1.001)

𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ Õ(n1.001)

Feng, Guo, Yin, Zhang’20
mark/unmark


+ projected MCMC

state compression

+ projected MCMC
state compression

+ projected MCMC

Feng, He, Yin’21

-CNFk

atomic CSP

atomic CSPJain, Pham, Vuong’21a

He, Sun, Wu’21

fast sampler: polynomial time

even for unbounded degree

atomic CSP: each constraint forbids a small

 number  of configurationsN = poly(k, Δ, q)



Example: hypergraph -coloring

-uniform hypergraph 


color set  for each 

Solution: an assignment such that no hyperedge 
(constraint) is monochromatic


q
k H = (V, ℰ)

[q] v ∈ V

Example: -robust hypergraph -coloring

-uniform hypergraph 


color set  for each 

Solution: an assignment such that each hyperedge 
(constraint) has no  vertices with the same color


δ q
k H = (V, ℰ)

[q] v ∈ V

(1 − δ)k

, atomic!N = q

, non-atomic!N ≥ qδk
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Feng, He, Yin’21

-CNFk

atomic CSP

atomic CSPJain, Pham, Vuong’21a

He, Sun, Wu’21

The projected MCMC technique for fast sampling LLL only works for atomic instances
Open problem: fast sampling LLL for general CSP? (new techniques required)
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Our results

For general CSP satisfying


 


• Sampling algorithm:

draw almost uniform satisfying solution in expected time 


• Counting algorithm:

approximately count satisfying solutions in expected time 


• Inference algorithm:

approximate marginal probability in expected time 

q2 ⋅ k ⋅ p ⋅ Δ7 ≤
1

150e3

O(poly(k, Δ, q) ⋅ n)

Õ(poly(k, Δ, q) ⋅ n2)

O(poly(k, Δ, q))

fast sampler for general CSPs in the LLL regime

           : domain size

           : constraint width 

           : violation probability

          : constraint degree

           : 


q
k
p
Δ
n |V |



Local Uniformity

[Haeupler, Saha, Srinivasan ’11]:

LLL condition  


where  


⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at 

μ
μv v ∈ V



Local Uniformity

[Haeupler, Saha, Srinivasan ’11]:

LLL condition  


where  


⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at 

μ
μv v ∈ V



Local Uniformity

[Haeupler, Saha, Srinivasan ’11]:

LLL condition  


where  


⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at 

μ
μv v ∈ V



Local Uniformity

“zone of local uniformity”

“zone of indecision”
[Haeupler, Saha, Srinivasan ’11]:

LLL condition  


where  


⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at 

μ
μv v ∈ V




μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

: uniform over 𝒰 [q]

𝒟(x) =
μv(x) − θ
1 − qθ

“Overflow distribution”

Local Uniformity

“zone of local uniformity”

“zone of indecision”
[Haeupler, Saha, Srinivasan ’11]:

LLL condition  


where  


⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at 

μ
μv v ∈ V



A marginal sampler

μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

To draw from :

with probability        , draw from 

with probability , draw from 

μv
qθ 𝒰

1 − qθ 𝒟
Trivial!

Non-trivial!



sampling from                                          sampling from  𝒟 μv

Bernoulli factory algorithms
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sampling from                                          sampling from  𝒟 μv

Bernoulli factory algorithms

[Nacu, Peres  ’15][Huber ’16][Dughmi et al  ’16]


a linear transform of μv𝒟 =
μv − θ
1 − qθ

A marginal sampler

μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

To draw from :

with probability        , draw from 

with probability , draw from 

μv
qθ 𝒰

1 − qθ 𝒟
Trivial!

Non-trivial!

A chicken-egg conundrum?



Factorization of the formula
A key observation:  sampling other variables first helps factorize the formula!

Factorized!
remove satisfied 


constraints
sampling other 


variables

When the connected component containing  is small,

rejection sampling provides efficient samples from  

v
μv



A recursive marginal sampler

To draw from :

with probability        , draw from 

with probability , draw from 

μv
qθ 𝒰

1 − qθ 𝒟


μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

𝒟 =
μv − θ
1 − qθ

To draw from :

(1) use recursive calls to repeatedly sample 

other variables to help factorize the formula

(2) after (1), use Bernoulli Factory algorithms 

accessing rejection sampling as an oracle

𝒟

choose  
cleverly!



A recursive marginal sampler
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A recursive marginal sampler
Caveat: the LLL condition 
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A recursive marginal sampler
Caveat: the LLL condition 
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chain rule correctness!→

To draw from :

with probability        , draw from 

with probability , draw from 

μv
qθ 𝒰

1 − qθ 𝒟


μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

𝒟 =
μv − θ
1 − qθ

To draw from :

(1) use recursive calls to repeatedly sample 

other variables to help factorize the formula

(2) after (1), use Bernoulli Factory algorithms 

accessing rejection sampling as an oracle

𝒟

choose  
cleverly!

Freezing[Beck’ 91][JPV’ 21b]

“freeze” ！
Pr

𝒫
[¬c ∣ X] > p′￼ ⟹ c



v

Example: hypergraph coloring
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Example: hypergraph coloring
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v

Example: hypergraph coloring

rejection sampling 

now efficient!

      ,      ,      ,      , “freezing” threshold Q = { }V p′￼ =
1
64



Marginal Sampler
MarginSample :  draw from 


Choose  uniformly at random;


If  then returns the -th value in ;


else return MarginOverflow ;

(v, X) μX
v

r ∈ [0,1]
r < qθ ⌈r/θ⌉ Q = [q]

(v, X)

MarginOverflow :   draw from 

While 


MarginSample ;

Draw from  by Bernoulli factory accessing an oracle drawing from , 
realized by rejection sampling;

(v, X) (μX
v − θ)/(1 − qθ)

u = NextVar(X, v) ≠ ⊥
Xu ← (u, X)

(μX
v − θ)/(1 − qθ) μX

v

local uniformity 
[Haeupler, Saha, Srinivasan ’11]:
worst-case LLL cond.  


where   
⟹ μX

v ≥ θ
θ = (1 − o(1))1/q

: subroutine for choosing the next variable to sample
NextVar
(informal) boundary variable over connected component of frozen constraints containing v

:  conditional on μX
v μv X



The main sampling algorithm
Main Sampling Algorithm:

Initially,  is an empty partial assignment (with no variable assigned);

For  do:


if  is not involved in any constraint  frozen by , then

MarginSample ;


Complete  to a uniform random satisfying assignment by rejection sampling;

X
i = 1,…, n

vi c X
Xvi

← (vi, X)
X

remove satisfied 

constraints Decomposed!



The main sampling algorithm
Main Sampling Algorithm:

Initially,  is an empty partial assignment (with no variable assigned);

For  do:


if  is not involved in any constraint  frozen by , then

MarginSample ;


Complete  to a uniform random satisfying assignment by rejection sampling;

X
i = 1,…, n

vi c X
Xvi

← (vi, X)
X

chain rule correctness!→

remove satisfied 

constraints Decomposed!



The freezing threshold p′￼

small p′￼

good guarantees of

worst-case local uniformity 


(large )qθ

large probability MarginSample 
terminates immediately

small p/p′￼

constraints are easy to

satisfy under local uniformity 

small number of recursive calls

during the factorization process

small enough p  MarginSample is efficient (informal) 

and how it relates to efficiency of MarginSample



Behavior of the algorithm: a branching process!

MS : MarginSample
MO : MarginOverflow

Efficiency of the algorithm

Challenges

• The number of offsprings of  cannot be 

locally upper bounded (may be up to )


• The offspring distribution of  is dependent 

with  (multi-type BP with exponentially many types) 

MO(X, v)
n

MO(X, v)
(X, v)

: offspring  with probability MS(X, v) MO(X, v) 1 − qθ

: offspring with

distribution determined by  

MO(X, v) MS(Y1, u1), MS(Y2, u2), …,
(X, v)



Efficiency of the algorithm

: offspring  with probability MS(X, v) MO(X, v) 1 − qθ

: offspring with

distribution determined by  

MO(X, v) MS(Y1, u1), MS(Y2, u2), …,
(X, v)

MS : MarginSample
MO : MarginOverflow

Percolation-style analysis
analyze the probability each path occurs

Witness argument

A long path a large -tree[Alon’ 91]

with ind. bad events


{2,3}

Type 1:  (probability )MS(X, v) ⟶ MO(X, v) qθ
Type 2:  is frozen (probability roughly )c ∈ 𝒞 p′￼/p

The  bound is from balancing the probability

of the two bad events and the structure of -tree

Δ7

{2,3}

Behavior of the algorithm: a branching process!

Bad events



Summary
We give the first polynomial-time algorithm for sampling general CSP solutions in the LLL 
regime with unbounded degree.


We introduce a new technique for sampling LLL: recursive marginal sampler.
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We give the first polynomial-time algorithm for sampling general CSP solutions in the LLL 
regime with unbounded degree.


We introduce a new technique for sampling LLL: recursive marginal sampler.

The exact threshold: closing the gap between  and  for sampling LLL


Generalizations: sampling LLL for non-uniform distribution and/or non-variable framework


Extending the idea: other applications of the recursive marginal sampler, or shed some light on 
the design for Markov chain algorithms?

pΔ7 ≲ 1 pΔ2 ≳ 1
Open Problems



Summary
We give the first polynomial-time algorithm for sampling general CSP solutions in the LLL 
regime with unbounded degree.


We introduce a new technique for sampling LLL: recursive marginal sampler.

The exact threshold: closing the gap between  and  for sampling LLL


Generalizations: sampling LLL for non-uniform distribution and/or non-variable framework


Extending the idea: other applications of the recursive marginal sampler, or shed some light on 
the design for Markov chain algorithms?

pΔ7 ≲ 1 pΔ2 ≳ 1
Open Problems
Thank you!


