Sampling Lovász Local Lemma for **General Constraint Satisfaction Solutions** in Near-Linear Time

Slides made by: Chunyang Wang (Nanjing University) **Presenter: Weiming Feng (University of Edinburgh)**

Authors: Kun He (Chinese Academy of Sciences) **Chunyang Wang (Nanjing University)** Yitong Yin (Nanjing University)

Constraint Satisfaction Problem

Variables: $V = \{v_1, v_2, ..., v_n\}$ with finite domains Q_v for each $v \in V$

 $v \in vbl(c)$

CSP solution: assignment $X \in \bigotimes Q_v$ s.t. all constraints are satisfied $v \in V$

 $\Phi = (V, Q, \mathscr{C})$

- **Constraints**: $\mathscr{C} = \{c_1, c_2, \dots, c_m\}$ with each $c \in \mathscr{C}$ defined on $vbl(c) \subseteq V$
 - $c: \bigotimes Q_v \rightarrow \{\text{satisfied}, \text{not satisfied}\}$

Constraint Satisfaction Problem $\Phi = (V, Q, \mathscr{C})$

Variables: $V = \{v_1, v_2, ..., v_n\}$ with finite domains Q_v for each $v \in V$

 $v \in vbl(c)$

CSP solution: assignment $X \in \bigotimes Q_v$ s.t. all constraints are satisfied $v \in V$

Decision: Can we efficiently decide if Φ has a solution?

Search: Can we efficiently find a solution of Φ ?

- **Constraints**: $\mathscr{C} = \{c_1, c_2, \dots, c_m\}$ with each $c \in \mathscr{C}$ defined on $vbl(c) \subseteq V$
 - $c: \bigotimes Q_v \to \{\text{satisfied}, \text{not satisfied}\}$
 - Sampling: Can we efficiently sample an (almost) uniform random solution of Φ ?

Example: k-CNF $V = \{x_1, x_2, \dots, x_n\}$ $\mathscr{C} = (C_1, C_2, ..., C_m), |C_i| = k$ $Q_v \in \{\text{True}, \text{False}\}\$ for each $v \in V$ Solution: an assignment such that each clause (constraint) evaluates to True

Example: hypergraph q-coloring *k*-uniform hypergraph $H = (V, \mathscr{C})$ color set [q] for each $v \in V$ Solution: an assignment such that no hyperedge (constraint) is monochromatic

Lovász Local Lemma $\Phi = (V, Q, \mathscr{C})$

Variable framework

- each $v \in V$ draws from Q_v uniformly and independently at random
- product distribution \mathscr{P}

Parameters

- violation probability $p = \max \Pr[\neg c]$
- $c \in \mathscr{C} \mathscr{P}$ • constraint degree $\Delta = \max |\{c' \in \mathscr{C} \mid vbl(c) \cap vbl(c') \neq \emptyset\}|$ $c \in \mathscr{C}$

Lovász Local Lemma $\Phi = (V, Q, \mathscr{C})$

Variable framework

- each $v \in V$ draws from Q_v uniformly and independently at random
- product distribution \mathscr{P}

Parameters

- violation probability $p = \max \Pr[\neg c]$ $c \in \mathscr{C} \mathscr{P}$
- constraint degree $\Delta = \max | \{c' \in \mathscr{C} \mid vbl(c) \cap vbl(c') \neq \emptyset\} |$ $c \in \mathscr{C}$

[Erdos, Lovasz '75] Algorithmic Lovász Local Lemma

A CSP solution exists and can be efficiently found!

Sampling Lovász Local Lemma

Sampling LLL

Input: a CSP formula $\Phi = (V, Q, \mathscr{C})$ under LLL-like conditions $p\Delta^c \lesssim 1$

Output: an (almost) uniform satisfying solution of Φ

Sampling Lovász Local Lemma

Sampling LLL

Input: a CSP formula $\Phi = (V, Q, \mathscr{C})$ under LLL-like conditions $p\Delta^c \lesssim 1$

Output: an (almost) uniform satisfying solution of Φ

Applications:

Approximate counting CSP solutions (Counting LLL)

Almost Uniform Sampling self-reduction [Jerrum, Valiant, Vazirani 1986]

adaptive simulated annealing [Štefankovič, Vempala, Vigoda 2009] Approximate Counting

Work	Instance	Condition	Complexity	Technique
Guo, Jerrum, Liu'16	CSP with large constraint intersections	$p\Delta^2 \lesssim 1, s \ge \min(\log \Delta, k/2)$	$poly(k,\Delta,q)\cdot n$	partial rejection sam
Hermon, Sly, Zhang'16	monotone <i>k</i> -CNF	$p\Delta^2 \lesssim 1$	$poly(k, \Delta) \cdot n \log n$	MCMC

Work	Instance	Condition	Complexity	Technique
Guo, Jerrum, Liu'16	CSP with large constraint intersections	$p\Delta^2 \lesssim 1, s \ge \min(\log \Delta, k/2)$	$poly(k, \Delta, q) \cdot n$	partial rejection sam
Hermon, Sly, Zhang'16	monotone <i>k</i> -CNF	$p\Delta^2 \lesssim 1$	$poly(k, \Delta) \cdot n \log n$	MCMC
Moitra'17	<i>k</i> -CNF	$p\Delta^{60} \lesssim 1$	$n^{poly(k,\Delta)}$	mark/unmark + linear programm
Guo, Liu, Lu, Zhang'19	hypergraph coloring	$p\Delta^{16} \lesssim 1$	$n^{poly(k,\Delta,\log q)}$	adaptive mark/unn + linear programm
Jain, Pham, Vuong'21b	general CSP	$p\Delta^7 \lesssim 1$	$n^{poly(k,\Delta,\log q)}$	adaptive mark/unn + linear programm
$\begin{array}{l} \mbox{polynomial running time} \\ \mbox{only if } k,q,\Delta = O(1) \end{array}$				

Work	Instance	Condition	Complexity	Technique
Guo, Jerrum, Liu'16	CSP with large constraint intersections	$p\Delta^2 \lesssim 1, s \ge \min(\log \Delta, k/2)$	$poly(k,\Delta,q)\cdot n$	partial rejection sam
Hermon, Sly, Zhang'16	monotone <i>k</i> -CNF	$p\Delta^2 \lesssim 1$	$poly(k, \Delta) \cdot n \log n$	MCMC
Moitra'17	<i>k</i> -CNF	$p\Delta^{60} \lesssim 1$	$n^{poly(k,\Delta)}$	mark/unmark + linear programm
Guo, Liu, Lu, Zhang'19	hypergraph coloring	$p\Delta^{16} \lesssim 1$	$n^{poly(k,\Delta,\log q)}$	adaptive mark/unn + linear programm
Jain, Pham, Vuong'21b	general CSP	$p\Delta^7 \lesssim 1$	$n^{poly(k,\Delta,\log q)}$	adaptive mark/unn + linear programm

Work	Instance	Condition	Complexity	Technique
Guo, Jerrum, Liu'16	CSP with large constraint intersections	$p\Delta^2 \lesssim 1, s \ge \min(\log \Delta, k/2)$	$poly(k, \Delta, q) \cdot n$	partial rejection sam
Hermon, Sly, Zhang'16	monotone <i>k</i> -CNF	$p\Delta^2 \lesssim 1$	$poly(k, \Delta) \cdot n \log n$	MCMC
Moitra'17	<i>k</i> -CNF	$p\Delta^{60} \lesssim 1$	$n^{poly(k,\Delta)}$	mark/unmark + linear programm
Guo, Liu, Lu, Zhang'19	hypergraph coloring	$p\Delta^{16} \lesssim 1$	$n^{poly(k,\Delta,\log q)}$	adaptive mark/unn + linear programm
Jain, Pham, Vuong'21b	general CSP	$p\Delta^7 \lesssim 1$	$n^{poly(k,\Delta,\log q)}$	adaptive mark/unn + linear programm
Feng, Guo, Yin, Zhang'20	<i>k</i> -CNF	$p\Delta^{20} \lesssim 1$	$poly(k,\Delta) \cdot \tilde{O}(n^{1.001})$	mark/unmark + projected MCM
Feng, He, Yin'21	atomic CSP	$p\Delta^{350} \lesssim 1/N$	$poly(k,\Delta,q)\cdot ilde O(n^{1.001})$	state compression + projected MCM
Jain, Pham, Vuong'21a He, Sun, Wu'21	atomic CSP	$p\Delta^{5.713} \lesssim 1/N$	$poly(k,\Delta,q)\cdot ilde O(n^{1.001})$	state compression + projected MCM
atomi	c CSP: each constraint fo	rhids a small	fast sampler: nolvn	omial time

alonne USF. Each constraint iordius à smail number $N = poly(k, \Delta, q)$ of configurations

tast sampler: polynomial time even for unbounded degree

Example: hypergraph q-coloring *k*-uniform hypergraph $H = (V, \mathscr{E})$ color set [q] for each $v \in V$ Solution: an assignment such that no hyperedge (constraint) is monochromatic

Example: δ -robust hypergraph q-coloring *k*-uniform hypergraph $H = (V, \mathscr{E})$ color set [q] for each $v \in V$ Solution: an assignment such that each hyperedge (constraint) has no $(1 - \delta)k$ vertices with the same color

Work	Instance	Condition	Complexity	Technique
Guo, Jerrum, Liu'16	CSP with large constraint intersections	$p\Delta^2 \lesssim 1, s \ge \min(\log \Delta, k/2)$	$poly(k, \Delta, q) \cdot n$	partial rejection sam
Hermon, Sly, Zhang'16	monotone <i>k</i> -CNF	$p\Delta^2 \lesssim 1$	$poly(k, \Delta) \cdot n \log n$	MCMC
Moitra'17	<i>k</i> -CNF	$p\Delta^{60} \lesssim 1$	$n^{poly(k,\Delta)}$	mark/unmark + linear programm
Guo, Liu, Lu, Zhang'19	hypergraph coloring	$p\Delta^{16} \lesssim 1$	$n^{poly(k,\Delta,\log q)}$	adaptive mark/unn + linear programm
Jain, Pham, Vuong'21b	general CSP	$p\Delta^7 \lesssim 1$	$n^{poly(k,\Delta,\log q)}$	adaptive mark/unn + linear programm
Feng, Guo, Yin, Zhang'20	<i>k</i> -CNF	$p\Delta^{20} \lesssim 1$	$poly(k, \Delta) \cdot \tilde{O}(n^{1.001})$	mark/unmark +projected MCM
Feng, He, Yin'21	atomic CSP	$p\Delta^{350} \lesssim 1/N$	$poly(k, \Delta, q) \cdot \tilde{O}(n^{1.001})$	state compression +projected MCM
Jain, Pham, Vuong'21a He, Sun, Wu'21	atomic CSP	$p\Delta^{5.713} \lesssim 1/N$	$poly(k, \Delta, q) \cdot \tilde{O}(n^{1.001})$	state compression +projected MCM

The projected MCMC technique for **fast** sampling LLL only works for **atomic** instances **Open problem: fast sampling LLL for general CSP? (new techniques required)**

Work	Instance	Condition	Complexity	Technique
Guo, Jerrum, Liu'16	CSP with large constraint intersections	$p\Delta^2 \lesssim 1, s \ge \min(\log \Delta, k/2)$	$poly(k, \Delta, q) \cdot n$	partial rejection sam
Hermon, Sly, Zhang'16	monotone <i>k</i> -CNF	$p\Delta^2 \lesssim 1$	$poly(k, \Delta) \cdot n \log n$	MCMC
Moitra'17	<i>k</i> -CNF	$p\Delta^{60} \lesssim 1$	$n^{poly(k,\Delta)}$	mark/unmark + linear programm
Guo, Liu, Lu, Zhang'19	hypergraph coloring	$p\Delta^{16} \lesssim 1$	$n^{poly(k,\Delta,\log q)}$	adaptive mark/unn + linear programm
Jain, Pham, Vuong'21b	general CSP	$p\Delta^7 \lesssim 1$	$n^{poly(k,\Delta,\log q)}$	adaptive mark/unn + linear programm
Feng, Guo, Yin, Zhang'20	<i>k</i> -CNF	$p\Delta^{20} \lesssim 1$	$poly(k, \Delta) \cdot \tilde{O}(n^{1.001})$	mark/unmark +projected MCN
Feng, He, Yin'21	atomic CSP	$p\Delta^{350} \lesssim 1/N$	$poly(k, \Delta, q) \cdot \tilde{O}(n^{1.001})$	state compression +projected MCN
Jain, Pham, Vuong'21a He, Sun, Wu'21	atomic CSP	$p\Delta^{5.713} \lesssim 1/N$	$poly(k, \Delta, q) \cdot \tilde{O}(n^{1.001})$	state compression +projected MCN
This work	general CSP	$p\Delta^7 \lesssim 1$	$poly(k, \Delta, q) \cdot n$	recursive margin sampler

Work	Instance	Condition	Complexity	Technique
Guo, Jerrum, Liu'16	CSP with large constraint intersections	$p\Delta^2 \lesssim 1, s \ge \min(\log \Delta, k/2)$	$poly(k, \Delta, q) \cdot n$	partial rejection sam
Hermon, Sly, Zhang'16	monotone <i>k</i> -CNF	$p\Delta^2 \lesssim 1$	$poly(k, \Delta) \cdot n \log n$	MCMC
Moitra'17	<i>k</i> -CNF	$p\Delta^{60} \lesssim 1$	$n^{poly(k,\Delta)}$	mark/unmark + linear programm
Guo, Liu, Lu, Zhang'19	hypergraph coloring	$p\Delta^{16} \lesssim 1$	$n^{poly(k,\Delta,\log q)}$	adaptive mark/unn + linear programm
Jain, Pham, Vuong'21b	general CSP	$p\Delta^7 \lesssim 1$	$n^{poly(k,\Delta,\log q)}$	adaptive mark/unn + linear programm
Feng, Guo, Yin, Zhang'20	<i>k</i> -CNF	$p\Delta^{20} \lesssim 1$	$poly(k, \Delta) \cdot \tilde{O}(n^{1.001})$	mark/unmark +projected MCN
Feng, He, Yin'21	atomic CSP	$p\Delta^{350} \lesssim 1/N$	$poly(k, \Delta, q) \cdot \tilde{O}(n^{1.001})$	state compression +projected MCN
Jain, Pham, Vuong'21a He, Sun, Wu'21	atomic CSP	$p\Delta^{5.713} \lesssim 1/N$	$poly(k, \Delta, q) \cdot \tilde{O}(n^{1.001})$	state compression +projected MCN
This work	general CSP	$p\Delta^7 \lesssim 1$	$poly(k, \Delta, q) \cdot n$	recursive margin sampler

inspired by [Anand, Jerrum '22]!

Our results fast sampler for general CSPs in the LLL regime

For **general** CSP satisfying

 $q^2 \cdot k$

- Sampling algorithm:
- Counting algorithm:
- Inference algorithm: approximate marginal probability in expected time $O(\text{poly}(k, \Delta, q))$

$$x \cdot p \cdot \Delta^7 \le \frac{1}{150 \mathrm{e}^3}$$

- q: domain size
- k: constraint width
- *p*: violation probability
- Δ : constraint degree
- n: |V|

draw almost uniform satisfying solution in expected time $O(\text{poly}(k, \Delta, q) \cdot n)$

approximately count satisfying solutions in expected time $\tilde{O}(\text{poly}(k, \Delta, q) \cdot n^2)$

Local Uniformity

 μ : uniform distribution over solutions μ_v : marginal distribution at $v \in V$

LLL condition
$$\Longrightarrow \mu_{v} \ge \theta$$

where $\theta = (1 - o(1)) - \frac{1}{q}$

Local Uniformity

 μ : uniform distribution over solutions μ_v : marginal distribution at $v \in V$

LLL condition
$$\Longrightarrow \mu_v \ge \theta$$

where $\theta = (1 - o(1)) - \frac{1}{q}$

Local Uniformity

 μ : uniform distribution over solutions μ_v : marginal distribution at $v \in V$

LLL condition
$$\Longrightarrow \mu_v \ge \theta$$

where $\theta = (1 - o(1)) - \frac{1}{q}$

Local Uniformity

 μ : uniform distribution over solutions μ_v : marginal distribution at $v \in V$

LLL condition
$$\Longrightarrow \mu_{v} \geq \theta$$

where $\theta = (1 - o(1)) - \frac{1}{q}$

$$\mu_v = q\theta \cdot \mathcal{U} + (1 - q\theta) \cdot \mathcal{Q}$$

Local Uniformity

 μ : uniform distribution over solutions μ_v : marginal distribution at $v \in V$ [Haeupler, Saha, Srinivasan '11]: LLL condition $\Longrightarrow \mu_{v} \geq \theta$ where $\theta = (1 - o(1))^{-1}$

 \mathcal{U} : uniform over [q]

"Overflow distribution"

 $\mu_{v} = q \theta$ To every with probability with probability

A chicken-egg conundrum?

Factorization of the formula

A key observation: sampling other variables first helps factorize the formula!

When the connected component containing v is small, rejection sampling provides efficient samples from μ_{v}

Marginal Sampler

MarginSample(v, X): draw from μ_v^X Choose $r \in [0,1]$ uniformly at random; If $r < q\theta$ then returns the $\lceil r/\theta \rceil$ -th value in Q = [q]; else return *MarginOverflow*(v, X);

MarginOverflow(v, X): draw from

While $u = \operatorname{NextVar}(X, v) \neq \bot$

 $X_{u} \leftarrow MarginSample(u, X);$

Draw from $(\mu_v^X - \theta)/(1 - q\theta)$ by Bernoulli factory accessing an oracle drawing from μ_v^X , realized by *rejection sampling*;

NextVar: subroutine for choosing the next variable to sample

(informal) boundary variable over connected component of frozen constraints containing v

 μ_v^X : μ_v conditional on X

local uniformity [Haeupler, Saha, Srinivasan '11]: worst-case LLL cond. $\Longrightarrow \mu_v^X \ge \theta$ where $\theta = (1 - o(1))1/q$

$$(\mu_v^X - \theta)/(1 - q\theta)$$

The main sampling algorithm

Main Sampling Algorithm:

Initially, X is an empty partial assignment (with no variable assigned); For i = 1, ..., n do:

if v_i is not involved in any constraint c frozen by X, then

 $X_{v_i} \leftarrow MarginSample(v_i, X);$

- Complete X to a uniform random satisfying assignment by rejection sampling;

The main sampling algorithm

Main Sampling Algorithm:

Initially, X is an empty partial assignment (with no variable assigned); For i = 1, ..., n do:

 $X_{v_i} \leftarrow MarginSample(v_i, X);$

- if v_i is not involved in any constraint c frozen by X, then chain rule \rightarrow correctness!
- Complete X to a uniform random satisfying assignment by rejection sampling;

The freezing threshold p^\prime and how it relates to efficiency of MarginSample

Efficiency of the algorithm

distribution determined by (X, v)

Efficiency of the algorithm

We give the first polynomial-time algorithm for sampling general CSP solutions in the LLL regime with unbounded degree.

We introduce a new technique for sampling LLL: recursive marginal sampler.

Summary

We give the first polynomial-time algorithm for sampling general CSP solutions in the LLL regime with unbounded degree.

We introduce a new technique for sampling LLL: recursive marginal sampler.

Open Problems

The exact threshold: closing the gap between $p\Delta^7 \lesssim 1$ and $p\Delta^2 \gtrsim 1$ for sampling LLL

Generalizations: sampling LLL for non-uniform distribution and/or non-variable framework

Extending the idea: other applications of the recursive marginal sampler, or shed some light on the design for Markov chain algorithms?

Summary

We give the first polynomial-time algorithm for sampling general CSP solutions in the LLL regime with unbounded degree.

We introduce a new technique for sampling LLL: recursive marginal sampler.

Thank you!

Open Problems

The exact threshold: closing the gap between $p\Delta^7 \lesssim 1$ and $p\Delta^2 \gtrsim 1$ for sampling LLL

Generalizations: sampling LLL for non-uniform distribution and/or non-variable framework

Extending the idea: other applications of the recursive marginal sampler, or shed some light on the design for Markov chain algorithms?

Summary

