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Constraint Satisfaction Problem
@ — (V9 Q’ %)
Variables: V = {v,, v,, ..., v } with finite domains Q, foreachv € V

Constraints: 6 = {c¢,¢,, ..., C,,} with each ¢ € € defined on vbl(c) C V

C . ® (), — {satisfied, not satisfied }

vevbl(c)

CSP solution: assignment X & ® 0, s.t. all constraints are satisfied

vevV
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vevbl(c)

CSP solution: assignment X & ® 0, s.t. all constraints are satisfied
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- Can we efficiently decide if @ has a solution?
Search: Can we efficiently find a solution of ®?

Sampling: Can we efficiently sample an (almost) uniform random solution of ®?



Example: k-CNF

V=1x,%,...,X,}

% — (Cl’ Cz, 5000 Cm), ‘Cl‘ — k

Q, € {True,False} foreachv € V

Solution: an assignment such that each clause (constraint)

evaluates to True

Example: hypergraph g-coloring
k-uniform hypergraph H = (V, &)

color set [g] foreachv € V

Solution: an assignment such that no hyperedge
(constraint) is monochromatic




Lovasz Local Lemma
® = (V,0,%)

Variable framework
« each v € Vdraws from Q, uniformly and independently at random

 product distribution &

Parameters
. violation probability p = max Pr| —¢]
CEC P

. constraint degree A = max | {c¢’' € € | vbl(c) N vbl(c") = D} |
CEEG
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,v'.' f‘l [Erdos, Lovasz ’75] | |
| ep A < 1 | ﬁ ' ACSP solution exists |
—_ '} u . ! ‘
ﬂ j Algorithmic Lovasz Local Lemma | and can be eff|C|entIy found |
‘ [Moser, Tardos ’10] "» j,



Sampling Lovasz Local Lemma

| Sampling LLL h

: Input: a CSP formula ® = (V, 0, €) under LLL-like conditions pA° < 1

NP-hard if pA% > 1!
‘ Output: an (almost) uniform satisfying solution of ® J

———————— ———————— —— — R A ———————— A —————————— ————————— e ———————— A ————————— — E—

. |[BGGGS19,GGW22]:

R




Sampling Lovasz Local Lemma

| Sampling LLL A

|
: Input: a CSP formula ® = (V, Q, €) under LLL-like conditions pA¢ < 1 —f— [BEEEST19.6GW2ZL

| - | NP-hard if pA? > 1!
‘ Output: an (almost) uniform satisfying solution of ® J
Applications:
Approximate counting CSP solutions (Counting LLL) | Inference in probabilistic graphical models
Almost Uniform Lo Seltreduction Approximate . Gibbs distribution u: uniform distribution over all solutions to @

Sampling adaptive simulated annealing Counting i | Inference: Pr [Xvi = ‘ XS = xS]

[Stefankovi¢, Vempala, Vigoda 2009] i XN,Ll
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CSP with large
constraint intersections

pA? < 1,5 > min(log A, k/2)

poly(k, A, q) - n

partial rejection sampling

Hermon, Sly, Zhang’16

monotone k-CNF
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poly(k, A) - nlogn

MCMC
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Technique

Guo, Jerrum, Liu’16

CSP with large
constraint intersections

pA? < 1,5 > min(log A, k/2)

pOIY(ka Aa Q) "N

partial rejection sampling

Hermon, Sly, Zhang’16

monotone k-CNF

Moitra’17/

k-CNF

poly(k, A) - nlogn

p Poly(k,A)

MCMC

mark/unmark
+ linear programming

Guo, Liu, Lu, Zhang’19

hypergraph coloring

y Poly(k,A,log g)

adaptive mark/unmark
+ linear programming

Jain, Pham, Vuong’21b

general CSP

n poly(k,A,log g)

adaptive mark/unmark
+ linear programming

polynomial running time
only if k, g, A = O(1)
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ain, Pham, Vuong 9 LSNPS n " + linear programming
: : 20 . mark/unmark
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atomic CSP: each constraint forbids a small
number N = poly(k, A, g) of configurations

+ projected MCMC

fast sampler: polynomial time
even for unbounded degree




Example: hypergraph g-coloring
k-uniform hypergraph H = (V, &)

color set [g]| foreachv € V

Solution: an assignment such that no hyperedge
(constraint) is monochromatic

N = g, atomic!

Example: o-robust hypergraph g-coloring
k-uniform hypergraph H = (V, &)

color set [g] foreachv € V
Solution: an assignment such that each hyperedge

(constraint) has no (1 — 0)k vertices with the same color
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+projected MCMC

The projected MCMC technique for fast sampling LLL only works for atomic instances
Open problem: fast sampling LLL for general CSP? (new techniques required)
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inspired by [Anand, Jerrum ’22]!




Our results

fast sampler for general CSPs in the LLL regime

' qg: domaln size l

For general CSP satisfying | k: constraint width

7 1 i p: violation probability !
q - k - -p- A 1 503 | A: constraint degree ‘
€ n: | Vi J

 Sampling algorithm:
draw almost uniform satisfying solution in expected time O(poly(k, A, g) - n)

 Counting algorithm:
approximately count satisfying solutions in expected time O(poly(k, A, q) - n?)

* Inference algorithm:
approximate marginal probability in expected time O(poly(k, A, gq))
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Local Uniformity

u: uniform distribution over solutions
u,: marginal distributionatv € V

[Haeupler, Saha, Srinivasan '11]:

LLL condition = u, > €

where 8 = (1 — 0(1))l
q
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Local Uniformity

D2
u: uniform distribution over solutions
_____________________________________________ p,: marginal distribution at v € V
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LLL condition = u, > €

where 0 = (1 — 0(1))l
q




Local Uniformity

D2
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u,: marginal distribution at v € V

P3
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LLL condition = u, > €

where 0 = (1 — 0(1))l
q
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| “zone of indecision” |-
“zone of local uniformity”

P2
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Local Uniformity

u: uniform distribution over solutions
u,: marginal distributionatv € V

[Haeupler, Saha, Srinivasan '11]:

LLL condition = u, > €
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Local Uniformity

P2

u: uniform distribution over solutions

p3
| “zone of indecision” L u,: marginal distributionatv € V

1 [Haeupler, Saha, Srinivasan "11]:

LLL condition = u, > €

l | i i | i - { - i 0
“zone of local uniformity” where 6 = (1 — 0(1));

7/ uniform over [g]

X

l u,=q0- %+ —qb) - 2

“Overflow distribution”

\ ey < 140 =0




A marginal sampler

ﬂv=q9%+(1—q9)9

R E— I R __ R

To draw from p,;:
with probability g6 , draw from 7/  Trivial



A marginal sampler

p,=q0 - %+ —-qb)- 2

To draw from p,;:
with probability g6 , draw from 7/  Trivial

H D = a linear transform of u,

e L L R R

Bernoulli factory algorithms
[Nacu, Peres ’15][Huber ’16][Dughmi et al ’'16]

sampling from & -sampling from p,,
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S e R — e R
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H D = a linear transform of u,

e L L R R

Bernoulli factory algorithms
[Nacu, Peres ’15][Huber ’16][Dughmi et al ’'16]

sampling from & -sampling from p,,




A marginal sampler

p,=q0-%U+(1—-q0) -

S e R — e R

To draw from p,

with probability g6f , draw from 7/  Trivial! |

u, — 0

H D = a linear transform of u,

e L L R R

Bernoulli factory algorithms
[Nacu, Peres ’15][Huber ’16][Dughmi et al ’'16]

sampling from & -sampling from p,,

A chicken-egg conundrum?



Factorization of the formula

A key observation: sampling other variables first helps factorize the formulal

sampling other §

M remove satisfied §
variables ‘

constraints

A R R e R e e e

| When the connected component containing v is small,
rejection sampling provides efficient samples from ¢,

¥1J e e e e e R —

S




A recurswe marglnal sampler

l u,=q6- U+ —qo) - D '

To draw from .,

with probability gf , draw from %/
with probability 1 — g6, draw from &

choose
cleverly!

1 — g0

e R —

To draw from :

(1) \ use recursive calls to repeatedly sample
E)ther varlables]to help factorize the formula

(2) after (1), use Bernoulli Factory algorithms

accessing rejection sampling as an oracle
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A recursive marginal sampler

- Caveat: the LLL condition
u,=4q0-%+(1 - qb)- 2 | is not self-reducible!

To draw from .,

with probability gf , draw from %/
with probability 1 — g6, draw from &

choose o
cleverly! 1 —q6

e R —

To draw from 9: | ( rTI \
(1) \ use recursive calls to repeatedly sample |

E)ther variablesjto help factorize the formula | chain rule—correctness!
(2) after (1), use Bernoulli Factory algorithms | l )

B ———

accessing rejection sampling as an oracle



A recursive marginal sampler

- Caveat: the LLL condition
u,=4q0-%+(1 - qb)- 2 | is not self-reducible!

e e ————— —— R S

To draw from .,

with probability gf , draw from %/
with probability 1 — g6, draw from &

i Freezing[Beck’ 91][JPV’ 21D] |
Pr[—c | X] > p’ = “freeze” ¢!
P

)

—— e A e R—

choose
cleverly!

1 — g0

e R —

To draw from & | (“_——‘ TN
(1) \ use recursive calls to repeatedly sample

E)ther varlablesjto help factorize the formula | chain rule—correctness!
(2) after (1), use Bernoulli Factory algorithms | l )

B ———

accessing rejection sampling as an oracle
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Example: hypergraph colpring

| ; {‘, ‘ ,‘}V , “freezing” threshold p’ = o




Example: hypergraph colpring

- _‘ {‘, ‘ ,‘}V , “freezing” threshold p’ = 6_4

| rejection sampling { |
i now efficient! |



Marginal Sampler

X "
i - .. conditional on X
MarginSample(v, X): draw from p;' Ho - Hy

Choose r € [0,1] uniformly at random; local uniformity

’ [Haeupler, Saha, Srinivasan ’11];
If r < g0 then returns the [r/6|-th value in Q = [g]; worst-case LLL cond. => X > 0

else return MarginOverflow(v, X); where 8 = (1 — o(1))1/q

MarginOverflow(v, X): draw from (/45( — 0)/(1 — gb)
While u = NextVar(X,v) # L
X, < MarginSample(u, X);

Draw from (,115( — 0)/(1 — gb) by Bernoulli factory accessing an oracle drawing from ,ug(,
realized by rejection sampling;

e R R e R R e E—

NextVar: subroutine for choosing the next variable to sample

(informal) boundary variable over connected component of frozen constraints containing v

e e e e e e e R e e R —




The main sampling algorithm

Main Sampling Algorithm:
Initially, X is an empty partial assignment (with no variable assigned);
Fori =1,...,n do:
if v is not involved in any constraint ¢ frozen by X, then
X, < MarginSample(v,, X);

Complete X to a uniform random satisfying assignment by rejection sampling;

remove satisfied
constraints




The main sampling algorithm

Main Sampling Algorithm:

Initially, X is an empty partial assignment (with no variable assigned);

Fori = 1,...,n do: E—

if v is not involved in any constraint ¢ frozen by X, then| chain rule—correctness!

X, <« MarginSample(v;, X); _

Complete X to a uniform random satisfying assignment by rejection sampling;

remove satisfied
constraints




The freezing threshold p’

and how it relates to efficiency of MarginSample

good guarantees of
» worst-case local uniformity

(large g6)

large probability MarginSample

small p’ terminates immediately

small number of recursive calls

ol » constraints are easy to
small p/p satisfy under local uniformity ' |

during the factorization process

small enough p ', MarginSample is efficient (informal)



MS : MarginSample
MO : MarginOverflow

[MS(X,U)]
MO(X,U)]
/ \
(MS(Y1,u1) (MS(Y3,u2) | (MS(Ys,us) |
[MO(Yl ul) ] [MO(Y;U;) ]
/ \
(MS(Z1,w1) ) (MS(Z5, w2) | (MS(Z3,ws) |

Behavior of the algorithm: a branching process!

—

e —

N

—

N S N N S

distribution determined by (X, v)

)
MS(X, v): offspring MO(X, v) with probability 1 — gf
MO(X, v): offspring MS(Y;, u;), MS(Y,, u,), ...,

with

I

e —————

Efficiency of the algorithm

———

Challenges

|
|
| ¢ The number of offsprings of MO(X, v) cannot be
| locally upper bounded (may be up to 1)

|

* The offspring distribution of MO(X, v) is dependent

| with (X, v) (multi-type BP with exponentially many types)
|

;:—,— e e e e R —




MS : MarginSample
MO : MarginOvertlow

\

[MS(YQ, us) J [MS(Y:;,’U:s) J

[MO(Y:s,U:s) ]

D

[MS(ZQ’UJQ)]

[MS(Z;;, wg) j

Behavior of the algorithm: a branching process!
MS(X, v): offspring MO(X, v) with probability 1 — gf
MO(X, v): offspring MS(Y;, u;), MS(Y,, u,), ..

distribution determined by (X, v)

———

N

S N N S

., With

|
|

— R I e e

)

|

.

Efficiency of the algorithm
J—

S N N N S ﬁ
u u

Percolation-style analysis |

OCCUrS .

_

analyze the probability each

R

Withess argument

a large {2 3} -tree

1 )
, 4
& ‘

with ind. bad events

_ e

S

Bad events
Type 1: MS(X, v) — MO(X, v) (probability g6) i
T 2 e C[g f babilit hly p’/
ype C is frozen (pro ability roughly p'/p)

N

e

The A’ bound is from balancing the probability |

of the two bad events and the structure of {2,3}-tree |

—— e e e e — vJ
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| regime with unbounded degree.
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' We give the first polynomial-time algorithm for sampling general CSP solutions in the LLL
| regime with unbounded degree.

? We introduce a new technique for sampling LLL: recursive marginal sampler.

Thank you!
Open Problems \

| The exact threshold: closing the gap between pA7 < 1 and pA2 2> ] for sampling LLL
;- Generalizations: sampling LLL for non-uniform distribution and/or non-variable framework

' Extending the idea: other applications of the recursive marginal sampler, or shed some light on
| the design for Markov chain algorithms? *



