
FOCS2022

Sampling Lovász Local Lemma for
General Constraint Satisfaction Solutions

in Near-Linear Time
Authors: Kun He (Chinese Academy of Sciences)

Chunyang Wang (Nanjing University)
Yitong Yin (Nanjing University)

Slides made by: Chunyang Wang (Nanjing University)
Presenter: Weiming Feng (University of Edinburgh)

Variables: with finite domains for each

Constraints: with each defined on

satisfied, not satisfied }

CSP solution: assignment s.t. all constraints are satisfied

V = {v1, v2, …, vn} Qv v ∈ V

𝒞 = {c1, c2, …, cm} c ∈ 𝒞 𝗏𝖻𝗅(c) ⊆ V

c : ⨂
v∈𝗏𝖻𝗅(c)

Qv → {

X ∈ ⨂
v∈V

Qv

Constraint Satisfaction Problem
Φ = (V, Q, 𝒞)

Variables: with finite domains for each

Constraints: with each defined on

satisfied, not satisfied }

CSP solution: assignment s.t. all constraints are satisfied

V = {v1, v2, …, vn} Qv v ∈ V

𝒞 = {c1, c2, …, cm} c ∈ 𝒞 𝗏𝖻𝗅(c) ⊆ V

c : ⨂
v∈𝗏𝖻𝗅(c)

Qv → {

X ∈ ⨂
v∈V

Qv

Constraint Satisfaction Problem
Φ = (V, Q, 𝒞)

Decision: Can we efficiently decide if has a solution?

Search: Can we efficiently find a solution of ?

Sampling: Can we efficiently sample an (almost) uniform random solution of ?

Φ

Φ

Φ

Example: -CNF

,

 for each

Solution: an assignment such that each clause (constraint)
evaluates to

k
V = {x1, x2, …, xn}
𝒞 = (C1, C2, …, Cm) |Ci | = k
Qv ∈ {𝖳𝗋𝗎𝖾, 𝖥𝖺𝗅𝗌𝖾} v ∈ V

𝖳𝗋𝗎𝖾

x1

x2

x5

x4

x3

x6

𝖳𝗋𝗎𝖾

𝖥𝖺𝗅𝗌𝖾

Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x5 ∨ ¬x6) ∧ (x3 ∨ ¬x4 ∨ ¬x5)

Example: hypergraph -coloring
-uniform hypergraph

color set for each

Solution: an assignment such that no hyperedge
(constraint) is monochromatic

q
k H = (V, ℰ)

[q] v ∈ V

Variable framework
• each draws from uniformly and independently at random

• product distribution

Parameters
• violation probability

• constraint degree

v ∈ V Qv

𝒫

p = max
c∈𝒞

Pr
𝒫

[¬c]

Δ = max
c∈𝒞

|{c′ ∈ 𝒞 ∣ 𝗏𝖻𝗅(c) ∩ 𝗏𝖻𝗅(c′) ≠ Ø} |

Lovász Local Lemma
Φ = (V, Q, 𝒞)

Variable framework
• each draws from uniformly and independently at random

• product distribution

Parameters
• violation probability

• constraint degree

v ∈ V Qv

𝒫

p = max
c∈𝒞

Pr
𝒫

[¬c]

Δ = max
c∈𝒞

|{c′ ∈ 𝒞 ∣ 𝗏𝖻𝗅(c) ∩ 𝗏𝖻𝗅(c′) ≠ Ø} |

epΔ ≤ 1
Lovász Local Lemma

[Erdos, Lovasz ’75]

A CSP solution exists
and can be efficiently found!Algorithmic Lovász Local Lemma

[Moser, Tardos ’10]

Lovász Local Lemma
Φ = (V, Q, 𝒞)

Sampling Lovász Local Lemma
Sampling LLL

Input: a CSP formula under LLL-like conditions

Output: an (almost) uniform satisfying solution of

Φ = (V, Q, 𝒞) pΔc ≲ 1
Φ

[BGGGS19,GGW22]:

NP-hard if !pΔ2 ≳ 1

Sampling Lovász Local Lemma
Sampling LLL

Input: a CSP formula under LLL-like conditions

Output: an (almost) uniform satisfying solution of

Φ = (V, Q, 𝒞) pΔc ≲ 1
Φ

Approximate counting CSP solutions (Counting LLL) Inference in probabilistic graphical models

Gibbs distribution : uniform distribution over all solutions to

Inference:

μ Φ
𝖯𝗋

X∼μ
[Xvi

= ⋅ ∣ XS = xs]

Applications:

Almost Uniform
Sampling

Approximate
Counting

self-reduction
[Jerrum, Valiant, Vazirani 1986]

adaptive simulated annealing
[Štefankovič, Vempala, Vigoda 2009]

[BGGGS19,GGW22]:

NP-hard if !pΔ2 ≳ 1

Work Instance Condition Complexity Technique

Guo, Jerrum, Liu’16 CSP with large

constraint intersections partial rejection samplingpΔ2 ≲ 1,s ≥ min(log Δ, k /2) 𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ n

pΔ2 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ n log nHermon, Sly, Zhang’16 monotone -CNFk MCMC

Work Instance Condition Complexity Technique

Guo, Jerrum, Liu’16 CSP with large

constraint intersections partial rejection samplingpΔ2 ≲ 1,s ≥ min(log Δ, k /2) 𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ n

pΔ2 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ n log nHermon, Sly, Zhang’16 monotone -CNFk MCMC

pΔ60 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ)

pΔ16 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ,log q)

pΔ7 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ,log q)

Moitra’17 mark/unmark

+ linear programming

Guo, Liu, Lu, Zhang’19 hypergraph coloring adaptive mark/unmark

 + linear programming

adaptive mark/unmark

+ linear programming general CSP Jain, Pham, Vuong’21b

-CNFk

polynomial running time

only if k, q, Δ = O(1)

Work Instance Condition Complexity Technique

Guo, Jerrum, Liu’16 CSP with large

constraint intersections partial rejection samplingpΔ2 ≲ 1,s ≥ min(log Δ, k /2) 𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ n

pΔ2 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ n log nHermon, Sly, Zhang’16 monotone -CNFk MCMC

pΔ60 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ)

pΔ16 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ,log q)

pΔ7 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ,log q)

Moitra’17 mark/unmark

+ linear programming

Guo, Liu, Lu, Zhang’19 hypergraph coloring adaptive mark/unmark

 + linear programming

adaptive mark/unmark

+ linear programming general CSP Jain, Pham, Vuong’21b

-CNFk

Work Instance Condition Complexity Technique

Guo, Jerrum, Liu’16 CSP with large

constraint intersections partial rejection samplingpΔ2 ≲ 1,s ≥ min(log Δ, k /2) 𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ n

pΔ2 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ n log nHermon, Sly, Zhang’16 monotone -CNFk MCMC

pΔ60 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ)

pΔ16 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ,log q)

pΔ7 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ,log q)

Moitra’17 mark/unmark

+ linear programming

Guo, Liu, Lu, Zhang’19 hypergraph coloring adaptive mark/unmark

 + linear programming

adaptive mark/unmark

+ linear programming general CSP Jain, Pham, Vuong’21b

-CNFk

pΔ20 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ Õ(n1.001)

pΔ350 ≲ 1/N

pΔ5.713 ≲ 1/N

𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ Õ(n1.001)

𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ Õ(n1.001)

Feng, Guo, Yin, Zhang’20
mark/unmark

+ projected MCMC

state compression

+ projected MCMC
state compression

+ projected MCMC

Feng, He, Yin’21

-CNFk

atomic CSP

atomic CSPJain, Pham, Vuong’21a

He, Sun, Wu’21

fast sampler: polynomial time

even for unbounded degree

atomic CSP: each constraint forbids a small

 number of configurationsN = poly(k, Δ, q)

Example: hypergraph -coloring
-uniform hypergraph

color set for each

Solution: an assignment such that no hyperedge
(constraint) is monochromatic

q
k H = (V, ℰ)

[q] v ∈ V

Example: -robust hypergraph -coloring
-uniform hypergraph

color set for each

Solution: an assignment such that each hyperedge
(constraint) has no vertices with the same color

δ q
k H = (V, ℰ)

[q] v ∈ V

(1 − δ)k

, atomic!N = q

, non-atomic!N ≥ qδk

Work Instance Condition Complexity Technique

Guo, Jerrum, Liu’16 CSP with large

constraint intersections partial rejection samplingpΔ2 ≲ 1,s ≥ min(log Δ, k /2) 𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ n

pΔ2 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ n log nHermon, Sly, Zhang’16 monotone -CNFk MCMC

pΔ60 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ)

pΔ16 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ,log q)

pΔ7 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ,log q)

Moitra’17

Guo, Liu, Lu, Zhang’19 hypergraph coloring

general CSP Jain, Pham, Vuong’21b

-CNFk mark/unmark

+ linear programming

adaptive mark/unmark

 + linear programming
adaptive mark/unmark

 + linear programming

pΔ20 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ Õ(n1.001)

pΔ350 ≲ 1/N

pΔ5.713 ≲ 1/N

𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ Õ(n1.001)

𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ Õ(n1.001)

Feng, Guo, Yin, Zhang’20 mark/unmark

+projected MCMC

state compression

+projected MCMC
state compression

+projected MCMC

Feng, He, Yin’21

-CNFk

atomic CSP

atomic CSPJain, Pham, Vuong’21a

He, Sun, Wu’21

The projected MCMC technique for fast sampling LLL only works for atomic instances
Open problem: fast sampling LLL for general CSP? (new techniques required)

Work Instance Condition Complexity Technique

Guo, Jerrum, Liu’16 CSP with large

constraint intersections partial rejection sampling

Hermon, Sly, Zhang’16 MCMC

Moitra’17 mark/unmark

+ linear programming

Guo, Liu, Lu, Zhang’19 hypergraph coloring adaptive mark/unmark

 + linear programming

Jain, Pham, Vuong’21b general CSP adaptive mark/unmark

 + linear programming

Feng, Guo, Yin, Zhang’20 mark/unmark

+projected MCMC

Feng, He, Yin’21 atomic CSP state compression

+projected MCMC

Jain, Pham, Vuong’21a

He, Sun, Wu’21 atomic CSP state compression

+projected MCMC

This work general CSP recursive marginal
sampler

pΔ2 ≲ 1,s ≥ min(log Δ, k /2) 𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ n

pΔ60 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ)

pΔ16 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ,log q)

pΔ7 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ,log q)

pΔ2 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ n log n

pΔ20 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ Õ(n1.001)

pΔ350 ≲ 1/N

pΔ5.713 ≲ 1/N

𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ Õ(n1.001)

𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ Õ(n1.001)

pΔ7 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ n

-CNFk

-CNFk

monotone -CNFk

Work Instance Condition Complexity Technique

Guo, Jerrum, Liu’16 CSP with large

constraint intersections partial rejection sampling

Hermon, Sly, Zhang’16 MCMC

Moitra’17 mark/unmark

+ linear programming

Guo, Liu, Lu, Zhang’19 hypergraph coloring adaptive mark/unmark

 + linear programming

Jain, Pham, Vuong’21b general CSP adaptive mark/unmark

 + linear programming

Feng, Guo, Yin, Zhang’20 mark/unmark

+projected MCMC

Feng, He, Yin’21 atomic CSP state compression

+projected MCMC

Jain, Pham, Vuong’21a

He, Sun, Wu’21 atomic CSP state compression

+projected MCMC

This work general CSP recursive marginal
sampler

pΔ2 ≲ 1,s ≥ min(log Δ, k /2) 𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ n

pΔ60 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ)

pΔ16 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ,log q)

pΔ7 ≲ 1 n𝗉𝗈𝗅𝗒(k,Δ,log q)

pΔ2 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ n log n

pΔ20 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ) ⋅ Õ(n1.001)

pΔ350 ≲ 1/N

pΔ5.713 ≲ 1/N

𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ Õ(n1.001)

𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ Õ(n1.001)

pΔ7 ≲ 1 𝗉𝗈𝗅𝗒(k, Δ, q) ⋅ n

-CNFk

-CNFk

inspired by [Anand, Jerrum ’22]!

monotone -CNFk

Our results

For general CSP satisfying

• Sampling algorithm:

draw almost uniform satisfying solution in expected time

• Counting algorithm:

approximately count satisfying solutions in expected time

• Inference algorithm:

approximate marginal probability in expected time

q2 ⋅ k ⋅ p ⋅ Δ7 ≤
1

150e3

O(poly(k, Δ, q) ⋅ n)

Õ(poly(k, Δ, q) ⋅ n2)

O(poly(k, Δ, q))

fast sampler for general CSPs in the LLL regime

 : domain size
 : constraint width
 : violation probability
 : constraint degree
 :

q
k
p
Δ
n |V |

Local Uniformity

[Haeupler, Saha, Srinivasan ’11]:

LLL condition

where

⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at

μ
μv v ∈ V

Local Uniformity

[Haeupler, Saha, Srinivasan ’11]:

LLL condition

where

⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at

μ
μv v ∈ V

Local Uniformity

[Haeupler, Saha, Srinivasan ’11]:

LLL condition

where

⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at

μ
μv v ∈ V

Local Uniformity

“zone of local uniformity”

“zone of indecision”
[Haeupler, Saha, Srinivasan ’11]:

LLL condition

where

⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at

μ
μv v ∈ V

μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

: uniform over 𝒰 [q]

𝒟(x) =
μv(x) − θ
1 − qθ

“Overflow distribution”

Local Uniformity

“zone of local uniformity”

“zone of indecision”
[Haeupler, Saha, Srinivasan ’11]:

LLL condition

where

⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at

μ
μv v ∈ V

A marginal sampler

μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

To draw from :

with probability , draw from

with probability , draw from

μv
qθ 𝒰

1 − qθ 𝒟
Trivial!

Non-trivial!

sampling from sampling from 𝒟 μv

Bernoulli factory algorithms

[Nacu, Peres ’15][Huber ’16][Dughmi et al ’16]

a linear transform of μv𝒟 =
μv − θ
1 − qθ

A marginal sampler

μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

To draw from :

with probability , draw from

with probability , draw from

μv
qθ 𝒰

1 − qθ 𝒟
Trivial!

Non-trivial!

sampling from sampling from 𝒟 μv

Bernoulli factory algorithms

[Nacu, Peres ’15][Huber ’16][Dughmi et al ’16]

a linear transform of μv𝒟 =
μv − θ
1 − qθ

A marginal sampler

μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

To draw from :

with probability , draw from

with probability , draw from

μv
qθ 𝒰

1 − qθ 𝒟
Trivial!

Non-trivial!

sampling from sampling from 𝒟 μv

Bernoulli factory algorithms

[Nacu, Peres ’15][Huber ’16][Dughmi et al ’16]

a linear transform of μv𝒟 =
μv − θ
1 − qθ

A marginal sampler

μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

To draw from :

with probability , draw from

with probability , draw from

μv
qθ 𝒰

1 − qθ 𝒟
Trivial!

Non-trivial!

A chicken-egg conundrum?

Factorization of the formula
A key observation: sampling other variables first helps factorize the formula!

Factorized!
remove satisfied

constraints
sampling other

variables

When the connected component containing is small,

rejection sampling provides efficient samples from

v
μv

A recursive marginal sampler

To draw from :

with probability , draw from

with probability , draw from

μv
qθ 𝒰

1 − qθ 𝒟

μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

𝒟 =
μv − θ
1 − qθ

To draw from :

(1) use recursive calls to repeatedly sample

other variables to help factorize the formula

(2) after (1), use Bernoulli Factory algorithms

accessing rejection sampling as an oracle

𝒟

choose
cleverly!

A recursive marginal sampler

chain rule correctness!→

To draw from :

with probability , draw from

with probability , draw from

μv
qθ 𝒰

1 − qθ 𝒟

μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

𝒟 =
μv − θ
1 − qθ

To draw from :

(1) use recursive calls to repeatedly sample

other variables to help factorize the formula

(2) after (1), use Bernoulli Factory algorithms

accessing rejection sampling as an oracle

𝒟

choose
cleverly!

A recursive marginal sampler
Caveat: the LLL condition

 is not self-reducible!

chain rule correctness!→

To draw from :

with probability , draw from

with probability , draw from

μv
qθ 𝒰

1 − qθ 𝒟

μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

𝒟 =
μv − θ
1 − qθ

To draw from :

(1) use recursive calls to repeatedly sample

other variables to help factorize the formula

(2) after (1), use Bernoulli Factory algorithms

accessing rejection sampling as an oracle

𝒟

choose
cleverly!

A recursive marginal sampler
Caveat: the LLL condition

 is not self-reducible!

chain rule correctness!→

To draw from :

with probability , draw from

with probability , draw from

μv
qθ 𝒰

1 − qθ 𝒟

μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟

𝒟 =
μv − θ
1 − qθ

To draw from :

(1) use recursive calls to repeatedly sample

other variables to help factorize the formula

(2) after (1), use Bernoulli Factory algorithms

accessing rejection sampling as an oracle

𝒟

choose
cleverly!

Freezing[Beck’ 91][JPV’ 21b]

“freeze” ！
Pr

𝒫
[¬c ∣ X] > p′ ⟹ c

v

Example: hypergraph coloring
 , , , , “freezing” threshold Q = { }V p′ =

1
64

v

Example: hypergraph coloring
 , , , , “freezing” threshold Q = { }V p′ =

1
64

v

Example: hypergraph coloring
 , , , , “freezing” threshold Q = { }V p′ =

1
64

v

Example: hypergraph coloring
 , , , , “freezing” threshold Q = { }V p′ =

1
64

v

Example: hypergraph coloring
 , , , , “freezing” threshold Q = { }V p′ =

1
64

v

Example: hypergraph coloring
 , , , , “freezing” threshold Q = { }V p′ =

1
64

v

Example: hypergraph coloring
 , , , , “freezing” threshold Q = { }V p′ =

1
64

v

Example: hypergraph coloring
 , , , , “freezing” threshold Q = { }V p′ =

1
64

v

Example: hypergraph coloring
 , , , , “freezing” threshold Q = { }V p′ =

1
64

v

Example: hypergraph coloring
 , , , , “freezing” threshold Q = { }V p′ =

1
64

v

Example: hypergraph coloring
 , , , , “freezing” threshold Q = { }V p′ =

1
64

 , , , , “freezing” threshold Q = { }V p′ =
1
64

v

Example: hypergraph coloring

v

Example: hypergraph coloring
 , , , , “freezing” threshold Q = { }V p′ =

1
64

v

Example: hypergraph coloring

rejection sampling

now efficient!

 , , , , “freezing” threshold Q = { }V p′ =
1
64

Marginal Sampler
MarginSample : draw from

Choose uniformly at random;

If then returns the -th value in ;

else return MarginOverflow ;

(v, X) μX
v

r ∈ [0,1]
r < qθ ⌈r/θ⌉ Q = [q]

(v, X)

MarginOverflow : draw from

While

MarginSample ;

Draw from by Bernoulli factory accessing an oracle drawing from ,
realized by rejection sampling;

(v, X) (μX
v − θ)/(1 − qθ)

u = NextVar(X, v) ≠ ⊥
Xu ← (u, X)

(μX
v − θ)/(1 − qθ) μX

v

local uniformity
[Haeupler, Saha, Srinivasan ’11]:
worst-case LLL cond.

where
⟹ μX

v ≥ θ
θ = (1 − o(1))1/q

: subroutine for choosing the next variable to sample
NextVar
(informal) boundary variable over connected component of frozen constraints containing v

: conditional on μX
v μv X

The main sampling algorithm
Main Sampling Algorithm:

Initially, is an empty partial assignment (with no variable assigned);

For do:

if is not involved in any constraint frozen by , then

MarginSample ;

Complete to a uniform random satisfying assignment by rejection sampling;

X
i = 1,…, n

vi c X
Xvi

← (vi, X)
X

remove satisfied

constraints Decomposed!

The main sampling algorithm
Main Sampling Algorithm:

Initially, is an empty partial assignment (with no variable assigned);

For do:

if is not involved in any constraint frozen by , then

MarginSample ;

Complete to a uniform random satisfying assignment by rejection sampling;

X
i = 1,…, n

vi c X
Xvi

← (vi, X)
X

chain rule correctness!→

remove satisfied

constraints Decomposed!

The freezing threshold p′

small p′

good guarantees of
worst-case local uniformity

(large)qθ

large probability MarginSample
terminates immediately

small p/p′

constraints are easy to
satisfy under local uniformity

small number of recursive calls
during the factorization process

small enough p MarginSample is efficient (informal)

and how it relates to efficiency of MarginSample

Behavior of the algorithm: a branching process!

MS : MarginSample
MO : MarginOverflow

Efficiency of the algorithm

Challenges

• The number of offsprings of cannot be

locally upper bounded (may be up to)

• The offspring distribution of is dependent

with (multi-type BP with exponentially many types)

MO(X, v)
n

MO(X, v)
(X, v)

: offspring with probability MS(X, v) MO(X, v) 1 − qθ

: offspring with

distribution determined by

MO(X, v) MS(Y1, u1), MS(Y2, u2), …,
(X, v)

Efficiency of the algorithm

: offspring with probability MS(X, v) MO(X, v) 1 − qθ

: offspring with

distribution determined by

MO(X, v) MS(Y1, u1), MS(Y2, u2), …,
(X, v)

MS : MarginSample
MO : MarginOverflow

Percolation-style analysis
analyze the probability each path occurs

Witness argument

A long path a large -tree[Alon’ 91]
with ind. bad events

{2,3}

Type 1: (probability)MS(X, v) ⟶ MO(X, v) qθ
Type 2: is frozen (probability roughly)c ∈ 𝒞 p′ /p

The bound is from balancing the probability

of the two bad events and the structure of -tree

Δ7

{2,3}

Behavior of the algorithm: a branching process!

Bad events

Summary
We give the first polynomial-time algorithm for sampling general CSP solutions in the LLL
regime with unbounded degree.

We introduce a new technique for sampling LLL: recursive marginal sampler.

Summary
We give the first polynomial-time algorithm for sampling general CSP solutions in the LLL
regime with unbounded degree.

We introduce a new technique for sampling LLL: recursive marginal sampler.

The exact threshold: closing the gap between and for sampling LLL

Generalizations: sampling LLL for non-uniform distribution and/or non-variable framework

Extending the idea: other applications of the recursive marginal sampler, or shed some light on
the design for Markov chain algorithms?

pΔ7 ≲ 1 pΔ2 ≳ 1
Open Problems

Summary
We give the first polynomial-time algorithm for sampling general CSP solutions in the LLL
regime with unbounded degree.

We introduce a new technique for sampling LLL: recursive marginal sampler.

The exact threshold: closing the gap between and for sampling LLL

Generalizations: sampling LLL for non-uniform distribution and/or non-variable framework

Extending the idea: other applications of the recursive marginal sampler, or shed some light on
the design for Markov chain algorithms?

pΔ7 ≲ 1 pΔ2 ≳ 1
Open Problems
Thank you!

