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Constraints:   with each   defined on  


  True, False}


CSP solution:  assignment   s.t. all constraints evaluate to True


V = {v1, v2, …, vn} Qv v ∈ V

𝒞 = {c1, c2, …, cm} c ∈ 𝒞 𝗏𝖻𝗅(c) ⊆ V

c : ⨂
v∈𝗏𝖻𝗅(c)

Qv → {

X ∈ ⨂
v∈V

Qv

(Atomic) Constraint Satisfaction Problem
Φ = (V, Q, 𝒞)



Variables:   with finite domains   for each  


Constraints:   with each   defined on  


  True, False}


CSP solution:  assignment   s.t. all constraints evaluate to True


V = {v1, v2, …, vn} Qv v ∈ V

𝒞 = {c1, c2, …, cm} c ∈ 𝒞 𝗏𝖻𝗅(c) ⊆ V

c : ⨂
v∈𝗏𝖻𝗅(c)

Qv → {

X ∈ ⨂
v∈V

Qv

(Atomic) Constraint Satisfaction Problem
Φ = (V, Q, 𝒞)

Atomic:   for each  |False−1(c) | = 1 c ∈ 𝒞



Variables:   with finite domains   for each  


Constraints:   with each   defined on  


  True, False}


CSP solution:  assignment   s.t. all constraints evaluate to True


V = {v1, v2, …, vn} Qv v ∈ V

𝒞 = {c1, c2, …, cm} c ∈ 𝒞 𝗏𝖻𝗅(c) ⊆ V

c : ⨂
v∈𝗏𝖻𝗅(c)

Qv → {

X ∈ ⨂
v∈V

Qv

(Atomic) Constraint Satisfaction Problem
Φ = (V, Q, 𝒞)

Decision: Can we efficiently decide if   has a solution?


Search: Can we efficiently find a solution of  ?


Sampling: Can we efficiently sample an (almost) uniform random solution of  ?

Φ

Φ

Φ

Atomic:   for each  |False−1(c) | = 1 c ∈ 𝒞



Example:  -CNF
 ,  ,  

  for each  

Solution: an assignment such that each clause (constraint) 
evaluates to  


k
V = {x1, x2, …, xn} 𝒞 = (C1, C2, …, Cm) |Ci | = k
Qv ∈ {𝖳𝗋𝗎𝖾, 𝖥𝖺𝗅𝗌𝖾} v ∈ V

𝖳𝗋𝗎𝖾

 x1

 x2

 x5

 x4

 x3

 x6

 𝖳𝗋𝗎𝖾

 𝖥𝖺𝗅𝗌𝖾

Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x5 ∨ ¬x6) ∧ (x3 ∨ ¬x4 ∨ ¬x5)

Example: hypergraph  -coloring
 -uniform hypergraph  

color set   for each  

Solution: an assignment such that no hyperedge 
(constraint) is monochromatic


q
k H = (V, ℰ)

[q] v ∈ V



Variable framework 
• each   draws from   uniformly and independently at random


• product distribution  


Parameters 
•  violation probability   

• dependency degree    

 

v ∈ V Qv

𝒫

p = max
c∈𝒞

Pr
𝒫

[¬c]

D = max
c∈𝒞

|{c′ ∈ 𝒞∖{c} ∣ 𝗏𝖻𝗅(c) ∩ 𝗏𝖻𝗅(c′ ) ≠ Ø} |
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|{c′ ∈ 𝒞∖{c} ∣ 𝗏𝖻𝗅(c) ∩ 𝗏𝖻𝗅(c′ ) ≠ Ø} |

ep(D + 1) ≤ 1
Lovász Local Lemma

[Erdos, Lovász ’75]

A CSP solution exists 
and can be efficiently found!Algorithmic Lovász Local Lemma


[Moser, Tardos ’10]

Lovász Local Lemma
Φ = (V, Q, 𝒞)
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Sampling Lovász Local Lemma
Sampling LLL

Input: a CSP formula   under LLL-like conditions  

Output: an (almost) uniform satisfying solution of  

Φ = (V, Q, 𝒞) pDc ≲ 1
Φ

Approximate counting CSP solutions (Counting LLL) Inference in probabilistic graphical models

Gibbs distribution  : uniform distribution over all solutions to   

Inference:  

μ Φ
𝖯𝗋

X∼μ
[Xvi

= ⋅ ∣ XS = xs]

Applications:

Almost Uniform 
Sampling 

Approximate 
Counting

self-reduction
[Jerrum, Valiant, Vazirani 1986]

adaptive simulated annealing
[Štefankovič, Vempala, Vigoda 2009]

[BGGGS19,GGW22]:

NP-hard if  !pD2 ≳ 1
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We give poly-time (approx) sampling/counting algorithms for atomic CSPs satisfying
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Sampling Lovász Local Lemma

D2 p−1D

Searching intractableSampling intractableSampling tractable

Boolean domain  
( -SAT)k

        large domain  
(hypergraph  -coloring)q

D3D4.82

This  
work

D2+oq(1)

This  
work
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Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x5 ∨ ¬x6) ∧ (x3 ∨ ¬x4 ∨ ¬x5)

 x1

 x5

 x4

 x6

Φ′ = (x1) ∧ (¬x1 ∨ ¬x5 ∨ ¬x6) ∧ (¬x4 ∨ ¬x5)

Non self-reducibility: LLL condition may degrade after pinning!
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Previous approach: freezing

In sampling LLL: freezing [JPV ’21b, HWY ’23] 
                                marking (static variant of freezing) [Moi ’19, GLLZ ’19, FGYZ ’20] 
                                state compression (large domain variant of marking) [FHY ’21, JPV ’21a ,HSW ’21]

First use: [Bec ’91] for algorithmic LLL, finally lead to   [Alon ’91, MR ’99, Sri ’09]pD4 ≲ 1

We can stop assigning variables of a constraint if its vio. prob. exceeds some   .p′ 

inevitably leads to  
suboptimal conditions

“Factorization”: need small  p/p′ 

LLL condition: need small  p′ 
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Decay of correlation

Weak Spatial Mixing (WSM):  ∀σ, τ ∈ 𝒬Λ : |μσ
v − μτ

v |TV ≤ δ(distG(v, Λ))

 : marginal probability of   conditioning on  μσ
v v σ

Strong Spatial Mixing (SSM):  ∀σ, τ ∈ 𝒬Λ that differ on Δ : |μσ
v − μτ

v |TV ≤ δ(distG(v, Δ))

Credit: Ankur Moitra’s  
    talk at STOC 2017

long-range dependencies exist 
         when  D = O(k)

Dependencies (between variables) decays as the distance grows.



Decay of correlation

For two CSPs    and   (differ in one constraint) under  
our condition, there exists a coupling   of   and   such that

(V, 𝒬, 𝒞) (V, 𝒬, 𝒞∖{c0})
(X, Y) μ𝒞∖{c0} μ𝒞

Pr[dHam(X, Y) ≥ K] ≤ exp(−O(K)) .

Theorem. (Decay of correlation, informal)

Dependencies (between variables) decays as the distance grows.

  : uniform distribution over solutions of  μ𝒞∖{c0} (V, 𝒬, 𝒞)
  : uniform distribution over solutions of  μ𝒞 (V, 𝒬, 𝒞∖{c0})
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A constraint-wise coupling

Simplify the formula, we are done if the set of constraints are the same.
Otherwise, we pick any constraint in the discrepancy set and recurse!

(V, 𝒬, 𝒞∖{c0}) (V, 𝒬, 𝒞)
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Analysis of the coupling

All randomness by the procedure can be identified by two independent samples:
𝔛 ∼ μ𝒞∖{c0}, 𝔜 ∼ μ𝒞 .

Sampling by marginal distribution = Revealing local information of   and  𝔛 𝔜

The principle of deferred decisions!

(V, 𝒬, 𝒞∖{c0}) (V, 𝒬, 𝒞)
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Analysis of the coupling

[HSS ’14]: under local lemma regimes,   and   behave close to uniform𝔛 𝔜
witness of large discrepancy + percolation-style analysis

𝔛 ∼ μ𝒞∖{c0} 𝔜 ∼ μ𝒞
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We cannot really run the coupling, but we can write down linear programs that 
encode coupling errors to bootstrap the marginal probability. 

locally contractive  
          coupling 

efficient marginal  
          estimator 

This method was invented by Moitra [Moi ’19], applied in other works for 
sampling/counting LLL, [GLLZ ’19, JPV ’21b], and has recently been applied to 
other sampling/counting settings. [HLQZ ’24]
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Marginal estimator for   μ𝒞∖{c0}(c0) Efficient counting

Dynamic sampler that updates   to  X ∼ μ𝒞∖{c0} Y ∼ μ𝒞 Efficient sampling
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This regime almost matches the lower bound  , and still improves over the previous 
best regime in the worst case of Boolean domains.

At the heart of our approach is a novel constraint-wise coupling for CSPs, which may be of 
independent interest.
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Open Problems
sampling Lovász local lemma …

• … for small domain sizes? (especially, k-CNF)

• … for general CSPs? 

• … with a faster running time? (our result works in   time)npoly(k,D,log q)

Thank you!


