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Abstract. We present efficient counting and sampling algorithms for random 𝑘-SAT when the clause

density satisfies 𝛼 ≤ 2𝑘

poly(𝑘 ) . In particular, the exponential term 2𝑘 matches the satisfiability threshold

Θ(2𝑘) for the existence of a solution and the (conjectured) algorithmic threshold 2𝑘 (ln 𝑘)/𝑘 for efficiently

finding a solution. Previously, the best-known counting and sampling algorithms required far more

restricted densities 𝛼 ≲ 2𝑘/3 [HWY23]. Notably, our result goes beyond the lower bound 𝑑 ≳ 2𝑘/2

for worst-case 𝑘-SAT with bounded-degree 𝑑 [BGG
+

19], showing that for counting and sampling, the

average-case random 𝑘-SAT model is computationally much easier than the worst-case model.

At the heart of our approach is a new refined analysis of the recent novel coupling procedure by [WY24],

utilizing the structural properties of random constraint satisfaction problems (CSPs). Crucially, our analysis

avoids reliance on the 2-tree structure used in prior works, which cannot extend beyond the worst-case

threshold 2𝑘/2. Instead, we employ a witness tree similar to that used in the analysis of the Moser-Tardos

algorithm [MT10] for the Lovász Local lemma, which may be of independent interest. Our new analysis

provides a universal framework for efficient counting and sampling for random atomic CSPs, including,

for example, random hypergraph colorings. At the same time, it immediately implies as corollaries several

structural and probabilistic properties of random CSPs that have been widely studied but rarely justified,

including replica symmetry and non-reconstruction.
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1. Introduction

Random constraint satisfaction problems (CSPs) have attracted lots of attention in both computer

science and statistical physics in recent years. Typically, a random CSP consists of a set of 𝑚 = 𝛼𝑛

constraints imposed on 𝑛 variables with finite domains, where the constraints are randomly generated

according to a specific rule and 𝛼 > 0 is a constant representing the density of the instance. The

primary goal is to find a feasible solution satisfying all constraints or more generally, optimize a random

objective function specified by the constraints. Usually, with sufficiently small 𝛼, the problem is easy

and can be solved in polynomial time, while as 𝛼 grows, the problem becomes computationally hard at

a certain point. It is, thus, important to understand the computational complexity of random CSPs with

respect to the density 𝛼.
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Perhaps the most notable and important example of random CSPs in computer science is the random

𝑘-SAT problem. Let 𝑣1, . . . , 𝑣𝑛 be 𝑛 Boolean variables taking values in {True, False}. We construct

a 𝑘-SAT formula Φ = Φ(𝑘, 𝑛, 𝑚 = ⌊𝛼𝑛⌋) by selecting 𝑚 = ⌊𝛼𝑛⌋ clauses independently where each

clause has size 𝑘 and is obtained by selecting each literal independently and uniformly at random from

{𝑣1, . . . , 𝑣𝑛,¬𝑣1, . . . ,¬𝑣𝑛}. The fundamental problem for random 𝑘-SAT is to understand for what

value of 𝛼, a solution (i.e., satisfying assignment of variables) exists and can be found efficiently by an

algorithm. In recent years, significant progress has been made toward these problems. For random

𝑘-SAT, numerical experiments and heuristic arguments [MPZ02, MMZ05] support the Satisfiability
Conjecture, which posits the existence of a threshold 𝛼sat = 𝛼sat(𝑘) = 2𝑘 ln 2− (1 + ln 2)/2 + 𝑜𝑘 (1) that

can be described explicitly, such that for a random 𝑘-SAT instance Φ(𝑘, 𝑛, 𝑚 = ⌊𝛼𝑛⌋),

lim
𝑛→∞

Pr [Φ(𝑘, 𝑛, 𝑚) is satisfiable] =
{
1, 𝛼 > 𝛼sat;

0, 𝛼 < 𝛼sat.
(1)

Building on a long line of works [KKKS98, FB99, AM02, AP03, Coj14, DSS22], Ding, Sly, and Sun [DSS22]

finally established (1) for sufficiently large 𝑘 , confirming the prediction arising from statistical physics.

For other canonical random CSPs, such as random 𝑘-uniform hypergraph 𝑞-colorings, the satisfiability

threshold for the existence of a coloring remains unclear, with the current best upper and lower bounds

differing by an additive ln 2 + 𝑜𝑞 (1) factor [HM08, ACG19].

The next question is to design an efficient algorithm to find a solution at densities below the satisfi-

ability threshold where a solution exists with high probability. It is tempting to hope that whenever

a solution exists (with high probability) one can also find it in polynomial time. However, the best-

known algorithm for random 𝑘-SAT, developed by Coja-Oghlan [Coj10], works for densities up to

(1 − 𝑜𝑘 (1))2𝑘 (ln 𝑘)/𝑘 , leaving a gap of Θ(log 𝑘/𝑘) to the satisfiability threshold. Meanwhile, with the

hope of approaching the satisfiability threshold 𝛼sat, statistical physicists have developed sophisticated

and novel message-passing algorithms (the cavity method) such as belief propagation, survey propaga-

tion, and their advanced versions. While numerical experiments suggest that these algorithms perform

pretty well for small values of 𝑘 , it has been rigorously proved that in general they fail beyond the

density 2𝑘 (ln 𝑘)/𝑘 [Het16, CO17].

It has been noted that the density 2𝑘 (ln 𝑘)/𝑘 marks a phase transition in the geometry of the solution

space; see Figure 1 for an illustration. When the density 𝛼 is below 2𝑘 (ln 𝑘)/𝑘 , the solution space

consists of a single giant component that contains almost all solutions and any two solutions from the

component can be connected by a path of solutions such that adjacent pairs have Hamming distance

𝑜(𝑛). Meanwhile, once the density 𝛼 goes slightly beyond 2𝑘 (ln 𝑘)/𝑘 , the set of solutions is divided

into exponentially many small clusters such that each cluster is well-connected, but any two distinct

clusters are Ω(𝑛) away in Hamming distance. In this regime, a random solution contains many frozen

variables with high probability and there exist long-range correlations between variables [AC08]. For

this reason, the threshold 𝛼clust ≈ 2𝑘 (ln 𝑘)/𝑘 is called the clustering threshold.

Such long-range correlations and the emergence of frozen variables in the clustering phase can be

characterized by the overlap gap property, which is the barrier for a large family of popular algorithms,

including local search algorithms and message-passing algorithms like belief and survey propagation.

Thus, the algorithmic threshold for the searching problem is conjectured to coincide with the clustering

threshold. This has been partially established by the recent work [BH22] of Bresler and Huang who

proved that the class of low degree polynomial algorithms fail at density 4.91(2𝑘 (ln 𝑘)/𝑘), by establishing

a stronger version of the overlap gap property. We refer to the survey of Gamarnik [Gam21] for more

discussions on the overlap gap property and its implication on the intractability of random CSPs.

In this paper, we go beyond searching a solution for random 𝑘-SAT and consider the even harder

problems of sampling a uniformly random solution and counting the number of solutions. Sampling and

counting are crucial subroutines for many other statistical and computational tasks such as inference,

testing, or prediction. There have been several recent works on this topic [MS07, GGGY21, HWY23,

CGG
+
24]. For random 𝑘-SAT, the current best algorithm is given by He, Wu, and Yang [HWY23], who

presented an efficient algorithm for almost uniform sampling random 𝑘-SAT solutions up to densities
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𝛼 ≲ 2𝑘/3. Yet, there remains a huge exponential gap between this bound and the clustering threshold

𝛼clust ≈ 2𝑘 (ln 𝑘)/𝑘 for searching algorithms.

Meanwhile, message-passing algorithms such as belief and survey propagation from the cavity

method are naturally inference algorithms for estimating marginal probabilities and are believed to

work all the way up to the clustering threshold. Given the close relationship between inference and

counting/sampling, this seems to suggest that counting and sampling may also be tractable up to the

clustering threshold, which is the conjectured threshold for searching algorithms. Therefore, it is natural

to ask the following question:

For random 𝑘-SAT, are counting and sampling tractable up to the algorithmic threshold for searching?

1.1. Counting and sampling for random 𝑘-SAT. We establish the tractability of approximate

counting and almost uniform sampling for random 𝑘-SAT up to densities 𝛼 ≤ 2𝑘/poly(𝑘). In particular,

the exponential term 2𝑘 matches the satisfiability and algorithmic threshold for random 𝑘-SAT and

extends beyond the lower bound for worst-case 𝑘-SAT instances (see Remark 1.5 for more discussion).

The random 𝑘-SAT model is formally defined as follows.

Definition 1.1 (random 𝑘-SAT formulas). For 𝑘 ≥ 3, define Φ(𝑘, 𝑛, 𝑚) as the law of the 𝑘-SAT formula

chosen uniformly at random from all 𝑘-SAT formulas with 𝑛 variables and 𝑚 constraints.

Specifically, the random 𝑘-SAT formula Φ = (𝑉,𝐶) ∼ Φ(𝑘, 𝑛, 𝑚) is generated as follows:

• The variable set is defined as 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}.
• The constraint set is defined as𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚}, where each constraint 𝑐𝑖 consists of exactly

𝑘 literals ℓ𝑖,1, ℓ𝑖,2, . . . , ℓ𝑖,𝑘 , with each literal ℓ𝑖, 𝑗 chosen uniformly at random from all 2𝑛 literals

{𝑣1, 𝑣2, . . . , 𝑣𝑛,¬𝑣1,¬𝑣2, . . . ,¬𝑣𝑛}.

We present results for efficient (approximate) counting and (almost uniform) sampling of random

𝑘-SAT up to densities 𝛼 ≤ 2𝑘/poly(𝑘), improving upon the previous best regime 𝛼 ≲ 2𝑘/3 [HWY23].

Theorem 1.2 (counting and sampling random 𝑘-SAT solutions). There exists a universal constant
𝑐 ≥ 1 such that the following holds with high probability over the choice of the random 𝑘-SAT formula
Φ = (𝑉,𝐶) ∼ Φ(𝑘, 𝑛, ⌊𝛼𝑛⌋) where 0 < 𝛼 ≤ 2𝑘/𝑘𝑐 .

For any 𝜀 > 0, there exist the following algorithms, both with running time (𝑛/𝜀)poly(𝑘,𝛼) :
• (Counting) A deterministic algorithm that outputs 𝑍 which is an 𝜀-approximation of the number

of solutions 𝑍 (Φ) of Φ, i.e., (1 − 𝜀)𝑍 (Φ) ≤ 𝑍 ≤ (1 + 𝜀)𝑍 (Φ);
• (Sampling) An algorithm that outputs a random assignment 𝑋 ∈ {True, False}𝑉 that is 𝜀-close in

total variation distance to 𝜇Φ, the uniform distribution over all solutions of Φ.

One may hope to estimate the number of solutions 𝑍 (Φ) by simply computing and outputting

E[𝑍 (Φ)]; this however does not provide an effective approximation algorithm. The random 𝑘-SAT model

does not enjoy the superconcentration property [BCE17, CCM
+
24] where 𝑍 (Φ) concentrates around

E[𝑍 (Φ)] with constant or tiny 𝜔(1) factors with high probability, and furthermore, the standard trick

for boosting poly(𝑛) approximation ratios to FPTAS [SJ89] does not apply on such random instances.

We remark that while we consider random 𝑘-SAT in Theorem 1.2, we can easily obtain similar

results for random regular 𝑘-SAT of variable-degree 𝑑 = 𝑘𝛼 whose analysis would be simpler due

to the absence of high-degree vertices. For the random regular hypergraph independent set problem

(equivalently, random regular monotone 𝑘-SAT), it was shown that the Glauber dynamics for sampling

is rapidly mixing at density 𝛼 = 𝑂 (2𝑘/𝑘2) [HSZ19].

Our counting and sampling algorithms apply to general random atomic CSPs. Here, we present

results for random hypergraph colorings. A hypergraph 𝐻 = (𝑉, E) is 𝑘-uniform if |𝑒 | = 𝑘 for all 𝑒 ∈ E.

We adopt the following definition for the random generation of 𝑘-uniform hypergraphs.

Definition 1.3 (Erdős-Rényi hypergraph). For 𝑘 ≥ 2, define 𝐻 (𝑘, 𝑛, 𝑚) as the uniform distribution

over all 𝑘-uniform hypergraphs with 𝑛 vertices and 𝑚 distinct hyperedges.

For a hypergraph 𝐻 = (𝑉, E), a proper hypergraph 𝑞-coloring 𝑋 ∈ [𝑞]𝑉 assigns one of the 𝑞 colors

to each 𝑣 ∈ 𝑉 , ensuring no hyperedge is monochromatic. We present results for efficiently counting

and sampling proper 𝑞-colorings of random 𝑘-uniform hypergraphs up to densities 𝛼 ≤ 𝑞𝑘/poly(𝑘, 𝑞).
3



Theorem 1.4 (counting and sampling random 𝑘-uniform hypergraph 𝑞-colorings). There exists a
universal constant 𝑐 ≥ 1 such that the following holds with high probability over the choice of the random
hypergraph 𝐻 = (𝑉, E) ∼ 𝐻 (𝑘, 𝑛, ⌊𝛼𝑛⌋) where 𝛼 ≤ 𝑞𝑘/(𝑞𝑘)𝑐 .

For any 𝜀 > 0, there exist the following algorithms, both with running time (𝑛/𝜀)poly(log 𝑞,𝑘,𝛼) :

• (Counting) A deterministic algorithm that outputs 𝑍 which is an 𝜀-approximation of the number
of proper 𝑞-colorings 𝑍 (𝐻, 𝑞) of 𝐻, i.e., (1 − 𝜀)𝑍 (𝐻, 𝑞) ≤ 𝑍 ≤ (1 + 𝜀)𝑍 (𝐻, 𝑞);
• (Sampling) An algorithm that outputs a random assignment 𝑋 ∈ [𝑞]𝑉 that is 𝜀-close in total

variation distance to 𝜇𝐻 , the uniform distribution over all proper 𝑞-colorings of 𝐻.

An analog of Theorem 1.4 holds for random regular hypergraph colorings as well.

Remark 1.5 (Comparison with worst-case bounded-degree CSPs). It is helpful to review the literature

on counting and sampling for worst-case bounded-degree CSPs. A random 𝑘-SAT formula with density

𝛼 has an average degree of 𝑘𝛼, making it comparable to a 𝑘-SAT formula with maximum degree 𝑑 = 𝑘𝛼.

For bounded-degree CSPs, while a solution exists and can be efficiently found when 𝑑 ≲ 2𝑘 [EL75, MT10]

via the celebrated (algorithmic) Lovász local lemma, the problem of sampling and counting solutions

becomes intractable when 𝑑 ≳ 2𝑘/2 [BGG
+
19]. A similar separation occurs for 𝑘-uniform hypergraph

𝑞-colorings: while the existence/searching problem can be solved when 𝑑 ≲ 𝑞𝑘 , the sampling/counting

problem becomes intractable at 𝑑 ≳ 𝑞𝑘/2 [GGW22]. This demonstrates that the sampling and counting

problems are computationally much harder than searching for worst-case bounded-degree CSPs. In

contrast, our findings demonstrate that for random CSPs, the sampling and counting problems are not

significantly computationally harder than their satisfiability and algorithmic counterparts.

Remark 1.6. As mentioned, our main results Theorems 1.2 and 1.4 in fact apply to a broad family of

random CSPs (see Theorem 3.2 for a formal statement). One may wonder if the counting/sampling

threshold would always be close to or even match the searching threshold for general random CSPs.

The answer is probably no in general. A very recent paper [EG24] by El Alaoui and Gamarnik shows

that for the symmetric binary perceptron model, another important example of random CSPs, sampling

a solution is intractable at any constant density (for two common classes of algorithms) while there are

known algorithms for finding solutions at sufficiently low density.

We note that the random CSPs considered in this paper are sparse, in the sense that both the size

of constraints and the (average) degree of variables are constant. Meanwhile, the symmetric binary

perceptron model is dense as the constraint size and variable degrees are both linear. This leads to a

huge difference in the geometry of the solution space: For the symmetric binary perceptron model at

any constant density, most solutions are isolated with linear distance from each other. Therefore, it is

still possible that the counting/sampling threshold is equivalent to the searching threshold, or at least

somewhere near it, for general sparse random CSPs as considered in this paper.

1.2. Constraint-wise coupling and replica symmetry. Given the extensive focus in the literature,

we primarily present our results for random 𝑘-SAT in this subsection; however, the results and proofs

are equally applicable to random hypergraph colorings or other random atomic CSPs.

The central tool for our algorithmic results is a constraint-wise coupling developed in [WY24]. Let

Φ = (𝑉,𝐶) ∼ Φ(𝑘, 𝑛, ⌊𝛼𝑛⌋) be a 𝑘-SAT instance at density 𝛼 > 0, and let 𝑐0 ∈ 𝐶 be an arbitrary clause.

We define 𝜇Φ as the uniform distribution over all solutions to Φ, and 𝜇Φ\𝑐0 as the uniform distribution

over solutions to Φ \ 𝑐0 := (𝑉,𝐶 \ {𝑐0}) with the clause 𝑐0 removed from Φ. We establish the following

result concerning the 1-Wasserstein distance between the two distributions 𝜇Φ and 𝜇Φ\𝑐0 .

Theorem 1.7. There exists a universal constant 𝑐 ≥ 1 such that the following holds with high probability
over the choice of the random 𝑘-SAT formula Φ = (𝑉,𝐶) ∼ Φ(𝑘, 𝑛, ⌊𝛼𝑛⌋) where 0 < 𝛼 ≤ 2𝑘/𝑘𝑐 .

For any 𝑐0 ∈ 𝐶, it holds that

𝑊1
(
𝜇Φ, 𝜇Φ\𝑐0

)
= 𝑂 (log 𝑛),

where 𝑊1(·, ·) denotes the 1-Wasserstein distance with respect to the Hamming metric. That is, there exists
a coupling (𝑋,𝑌 ) of 𝜇Φ and 𝜇Φ\𝑐0 such that E[𝑑Ham(𝑋,𝑌 )] = 𝑂 (log 𝑛).
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Figure 1. The heuristic diagram in [DSS22] depicts phase transitions in the geometry of the

solution space of a random 𝑘-SAT instance as the density 𝛼 increases from left to right.

Theorem 1.7 is at the heart of our counting and sampling algorithms from Theorem 1.2. Intuitively, it

states that given a solution 𝑌 sampled from 𝜇Φ\𝑐0 (which may violate 𝑐0), we can flip the value of at

most 𝑂 (log 𝑛) variables with high probability to obtain a truth assignment 𝑋 in such a way that 𝑋 is a

solution to Φ and is distributed uniformly at random as 𝜇Φ. We establish Theorem 1.7 by constructing a

recursive coupling procedure and showing it terminates with high probability within𝑂 (log 𝑛) iterations.

We then apply an LP-based algorithm introduced by Moitra [Moi19] which provides fast counting and

sampling algorithms; this is also the strategy in [WY24].

The coupling result in Theorem 1.7 can be understood as a way to describe the decay of correlation
phenomenon. In particular, it is similar to various other notions of correlation decay such as dis-

agreement percolation for showing Gibbs uniqueness [vdBS94], recursive coupling for proving strong

spatial mixing [GMP05], and especially coupling independence for showing spectral independence

[CZ23, CGG
+
24]. For random CSPs like 𝑘-SAT, the Wasserstein distance between the original formula

and the formula obtained after the removal of a single clause is reminiscent of the cavity method.

However, establishing Theorem 1.7 for random 𝑘-SAT is quite different from those previous works on

distinct models. Firstly, the 𝑘-SAT instance is based on hypergraphs while previous rigorous approaches

for correlation decay mostly consider models defined on graphs. Secondly, the hypergraph associated

with a random 𝑘-SAT formula contains a large maximum degree, making the analysis significantly more

challenging. Finally, Theorem 1.7 considers the removal of a constraint, while previous approaches

often consider flipping the value of a variable.

Before discussing our proof approach for Theorem 1.7 in Section 1.3, we first mention a few direct

yet important implications of Theorem 1.7 for random 𝑘-SAT at the considered densities.

Many empirical studies in statistical physics use heuristics to predict the solution space geometry of

random 𝑘-SAT, with the (predicted) phase transitions illustrated in Figure 1. Extensive research from

both computer science and statistical physics has been dedicated to understanding these phases and their

corresponding thresholds [MMZ05, DMMZ05, ART06, CP12, ZK16, BS20]. Notably, the satisfiability

threshold 𝛼sat has been precisely determined by [DSS22] for sufficiently large 𝑘 . Other important

thresholds, such as the clustering threshold 𝛼clust (also referred to as the dynamic phase transition

threshold in [KMRT
+
07]), where the solution space of a 𝑘-SAT fragments into an exponential number

of clusters, and the condensation threshold 𝛼cond, beyond which the solution space is dominated by a

few large clusters, have been extensively studied but are not yet fully characterized.

One of the key tools for statistical physicists in understanding and describing the solution space

geometry of random 𝑘-SAT are the notions of replica symmetry and replica symmetry breaking [MRTS08],

first introduced by Parisi [Par79]. Informally, “replica symmetry” refers to the idea that two uniformly

chosen variables are nearly independent, while “replica symmetry breaking” corresponds to the existence

of extensive long-range correlations. Following [KMRT
+
07], we present the formal definition below.

Definition 1.8 (replica symmetry). Given 𝑘, 𝛼, we say that a random 𝑘-SAT model with density 𝛼 is

replica symmetric if, for Φ = (𝑉,𝐶) ∼ Φ(𝑘, 𝑛, ⌊𝛼𝑛⌋), a uniform satisfying assignment 𝜎 ∼ 𝜇Φ, and two

variables 𝑣1, 𝑣2 ∈ 𝑉 chosen uniformly at random, the following holds:

lim
𝑛→∞
|Pr [𝜎(𝑣1) = 𝜎(𝑣2) = True] − Pr [𝜎(𝑣1) = True] Pr [𝜎(𝑣2) = True] | = 0.
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Definition 1.8 essentially states that the events 𝜎(𝑣1) = True and 𝜎(𝑣2) = True are asymptotically

independent for large 𝑛, therefore indicating the absence of long-range correlations in a relatively

weak sense, as the typical distance between 𝑣1 and 𝑣2 is Ω(log 𝑛). Replica symmetry is conjectured to

hold up to the condensation threshold 𝛼cond, which has been verified on a few other models; see e.g.

[COKPZ17, COEJ
+
18] and the references therein. For random soft-constraint 𝑘-SAT, it has been shown

that replica symmetry is sufficient for the success of the Belief Propagation algorithm [CMR22].

While the replica symmetry condition has been extensively discussed in the literature, this property is

rarely proved rigorously. In this work, we show replica symmetry holds under the considered densities,

which follows immediately from Theorem 1.7.

Theorem 1.9 (replica symmetry of random 𝑘-SAT). Under the condition of Theorem 1.2, the random
𝑘-SAT model with density 𝛼 is replica symmetric.

Another important property that arises from the study of the random 𝑘-SAT by statistical physicists

is the (non-)reconstruction property [MM06], which informally requires one being able to estimate the

value of one variable given “far away” observations [GM07, MRT11].

For an SAT instance Φ = (𝑉,𝐶), we use vbl(𝑐) to denote the set of variables involved in 𝑐 for each

clause 𝑐 ∈ 𝐶. We let 𝐻Φ = (𝑉, E) denote the hypergraph where 𝑉 is the set of variables in Φ and

E = {vbl(𝑐) | 𝑐 ∈ 𝐶}. For a hypergraph 𝐻, we use 𝑑𝐻 (·, ·) to denote the graph-theoretic distance in

𝐻. Finally, for a hypergraph 𝐻 = (𝑉, E), a vertex 𝑣 ∈ 𝑉 , and any 𝑟 ≥ 1, we let 𝐵𝐻 (𝑣, 𝑟) ≜ {𝑢 ∈ 𝑉 |
𝑑𝐻 (𝑢, 𝑣) ≥ 𝑟} to denote the set of vertices in 𝑉 with distance to 𝑣 at least 𝑟 . We then follow [MRT11]

to give the following formal definition of the non-reconstruction property.

Definition 1.10 (non-reconstruction). Given 𝑘, 𝛼, we say that a random 𝑘-SAT model with density 𝛼

is non-reconstructible if, for Φ = (𝑉,𝐶) ∼ Φ(𝑘, 𝑛, ⌊𝛼𝑛⌋) with the uniform distribution over satisfying

assignments 𝜇 = 𝜇Φ and the induced hypergraph 𝐻 = 𝐻Φ, the following holds for any 𝑣 ∈ 𝑉 :

lim
𝑟→∞

lim sup
𝑛→∞

E
[
𝑑TV

(
𝜇{𝑣}∪𝐵𝐻 (𝑣,𝑟 ) , 𝜇𝑣 ⊗ 𝜇𝐵𝐻 (𝑣,𝑟 )

)]
= 0.

We say that the model is reconstructible otherwise. Here, 𝜇𝑣 , 𝜇𝐵𝐻 (𝑣,𝑟 ) , 𝜇{𝑣}∪𝐵𝐻 (𝑣,𝑟 ) denote the marginal

distributions induced from 𝜇 on the subset of variables {𝑣}, 𝐵𝐻 (𝑣, 𝑟), {𝑣} ∪ 𝐵𝐻 (𝑣, 𝑟), respectively.

The non-reconstruction property, which also reflects the absence of long-range correlations, is a

stronger condition than replica symmetry [CMR22]. In fact, non-reconstructibility is a necessary

condition for the rapid mixing of Glauber dynamics or other local Markov chains [BKMP05]. Further-

more, non-rigorous statistical mechanics calculations [MPZ02] and approximations up to the second

order [MRT11] strongly suggest that the threshold for non-reconstruction aligns with the clustering

threshold 𝛼clust. However, there is no rigorous proof of this as far as we know. In this work, we

demonstrate that non-reconstruction holds under the considered densities, which is again a direct

corollary of Theorem 1.7.

Theorem 1.11 (non-reconstruction of random 𝑘-SAT). Under the condition of Theorem 1.2, the random
𝑘-SAT model with density 𝛼 is non-reconstructible.

We further establish looseness of variables under the considered densities, an intuitive way of charac-

terizing the connectivity of the solution space [AC08, CGG
+
24]; see Definition 4.12 and Theorem 4.13

for details.

1.3. Technique Overview. We establish all of the results mentioned above in the context of atomic

CSPs. A CSP is considered atomic if each constraint is violated by exactly one assignment in its domain.

Any constraint with a constant number 𝑁 of violating configurations can be decomposed into 𝑁 atomic

constraints. Both SAT and hypergraph coloring instances fall under this category of atomic CSPs.

Our algorithm for counting and sampling atomic CSP solutions is inspired by the recently developed

recursive coupling procedure for bounded-degree atomic CSPs in [WY24]. Through the novel recursive

coupling procedure, [WY24] successfully dispenses with the freezing paradigm equipped by the previous

approaches [Bec91, Moi19, FHY21, JPV21], therefore bypassing the technical barrier and achieving a

𝑞𝑘 ≳ 𝑑2+𝑜𝑞 (1) bound for counting/sampling bounded-degree CSPs, where 𝑑 is the maximum degree of
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the instance. The freezing paradigm and its variant are also applied by all recent counting/sampling

algorithms for random CSPs [GGGY21, HWY23, CGG
+
24]. Hence, we naturally circumvent this barrier

for random CSPs.

However, the bound in [WY24] has an exponent of 2 + 𝑜𝑞 (1), which only approaches 2 for large

domain sizes and rises to ≈ 4.82 for the worst-case of atomic CSPs with Boolean domains, such

as for 𝑘-SAT. The way we improve this exponent to 1 + 𝑜(1) is by leveraging a new analysis of the
coupling procedure based on the structural properties of random CSPs. Random CSPs enjoy good structural

properties such as large constraint expansion, as already observed and utilized in [HWY23]. Our

main novelty lies in designing a new analysis for the coupling in [WY24] that takes advantage of

this structural property. Technically, we replace the 2-tree witness employed in the analysis of the

coupling in [WY24] by a denser witness structure, constructed similarly as the witness tree structure

for analyzing the Moser-Tardos algorithm [MT10], thereby achieving the improved bound.

This refined analysis of the coupling procedure immediately establishes properties such as replica

symmetry and non-reconstruction at the same density. We believe this new analysis is of independent

interest and may have further applications in both bounded-degree and random CSPs.

1.4. Organization. This paper is organized as follows.

In Section 2, we formally define atomic CSPs and introduce relevant preliminaries and notations.

In Section 3, we define the main structural condition (Condition 3.1), stated generally with respect

to atomic CSPs. We then claim that this condition suffices for efficient sampling and counting of

solutions (Theorem 3.2), and prove that both the random 𝑘-SAT instance in Theorem 1.2 and the random

hypergraph coloring instance in Theorem 1.4 satisfy this condition.

Section 4 and Section 5 together proves Theorem 3.2, which concludes the proof of Theorem 1.2

and Theorem 1.4. Specifically, Section 4 introduces the coupling in [WY24] with our new analysis and

establishes Theorem 1.7. Section 5 shows how to effectively convert this coupling into an efficient

counting and sampling algorithm.

In Section 4.4, we prove the properties related to the correlation decay phenomenon and the geometry

of the solution space, namely Theorems 1.9, 1.11 and 4.13, using the refined analysis of the coupling

developed in Section 4.

2. Preliminaries

2.1. Atomic CSPs and related notations. A constraint satisfaction problem (CSP) is described by a

collection of constraints defined on a set of variables. Formally, an instance of a constraint satisfaction

problem, called a CSP formula, is denoted by Φ = (𝑉, [𝑞], C). Here, 𝑉 is a set of 𝑛 = |𝑉 | random

variables, where each random variable 𝑣 ∈ 𝑉 has a finite domain [𝑞]. The collection of local constraints

is given by C, where each constraint 𝑐 ∈ C is a function defined as 𝑐 : [𝑞]vbl(𝑐) → {True, False}
over a subset of variables denoted as vbl(𝑐) ⊆ 𝑉 . For any subset of of constraints E ⊆ C, denote

vbl(E) ≜ ⋃
𝑐∈E vbl(𝑐). An assignment 𝜎 ∈ [𝑞]𝑉 is called satisfying for Φ if

Φ(𝜎) ≜
∧
𝑐∈C

𝑐
(
𝜎vbl(𝑐)

)
= True.

Furthermore, we say Φ is satisfiable if at least one satisfying assignment to Φ exists. We use ΩΦ to

denote the set of satisfying assignments to Φ, and use 𝑍 (Φ) = |ΩΦ | to denote the number of satisfying

assignments to Φ.

We say a constraint 𝑐 ∈ C is defined by atomic bad events, or simply, atomic, if it is violated by exactly

one configuration in [𝑞]vbl(𝑐)
. For an atomic constraint 𝑐, we use False(𝑐) to denote its only violating

configuration in [𝑞]vbl(𝑐)
. Moreover, when all constraints in C are atomic, we say Φ is atomic. It is

important to note that any constraint with a constant number 𝑁 of violating configurations can be

decomposed into 𝑁 atomic constraints. As a result, both SAT and hypergraph coloring instances fall

within the category of atomic CSPs.

2.1.1. Notations for (partial) assignments. For a partial assignment 𝜎 ∈ [𝑞]Λ specified over a subset

of variables Λ ⊆ 𝑉 , we use Λ(𝜎) = Λ to denote the set of assigned variables in 𝜎. For any partial
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assignment 𝜎 and any 𝑆 ⊆ Λ(𝜎), we use 𝜎𝑆 to denote

⊗
𝑣∈𝑆 𝜎(𝑣). We further write 𝜎𝑣 = 𝜎{𝑣} for

𝑣 ∈ 𝑉 .

For any two assignments 𝜎, 𝜏 such that Λ(𝜎) ∩ Λ(𝜏) = ∅, we define 𝜎 ∧ 𝜏 ∈ [𝑞]Λ(𝜎)∪Λ(𝜏 ) as the

concatenation of 𝜎 and 𝜏 such that for any 𝑣 ∈ Λ(𝜎) ∪ Λ(𝜏),

(𝜎 ∧ 𝜏) (𝑣) =
{
𝜎(𝑣) 𝑣 ∈ Λ(𝜎),
𝜏(𝑣) 𝑣 ∈ Λ(𝜏).

We will use ∅ to specifically denote an empty assignment, distinguishing from the empty set ∅.

2.1.2. Notations for events and probability measures. We begin by specifying some notations for events

and probability measures related to the CSP.

Definition 2.1 (simple notations for events). For simplicity of notation, we will use:

• a constraint 𝑐 ∈ C to denote the event that this constraint is satisfied;

• a subset of constraints E ⊆ C to denote the event that all constraints in E are satisfied;

• a partial assignment 𝜎 to denote the event that the assignment on Λ(𝜎) is precisely 𝜎.

Note that under this definition, the notation 𝜎 ∧ 𝜏 as a concatenation of assignments defined

previously is consistent with its interpretation as an event, where 𝜎 ∧ 𝜏 is considered as the logical

“and” of the two events 𝜎 and 𝜏.

We use P to denote the uniform product distribution over the space [𝑞]𝑉 . We use 𝜇 = 𝜇Φ to denote

the distribution over all satisfying assignments of Φ induced by P, i.e.

𝜇Φ ≜ P (· | C) .
𝜇Φ is well-defined only when Φ is satisfiable.

When the variable set 𝑉 and the domain [𝑞] are clear, we define the following notations for (condi-

tional) distributions for a given set of constraints E defined over 𝑉 , and some assignment 𝜎 defined

over Λ(𝜎):
𝜇E ≜ P(· | E), 𝜇𝜎

E ≜ P(· | E ∧ 𝜎).
For a probability distribution 𝜇 and some subset of variables Λ ⊆ 𝑉 , we use 𝜇Λ to denote the marginal

distribution induced by 𝜇 on Λ. We use commas to separate multiple subscripts; for example, we use

𝜇𝜎
E,Λ to denote the marginal distribution induced by 𝜇𝜎

E on Λ.

2.1.3. Pinned formula and pinned constraints. For a subset of variables Λ ⊆ 𝑉 and a partial assignment

𝜎 ∈ [𝑞]Λ specified on Λ, the pinned formula Φ = (𝑉, [𝑞], C) under 𝜎, denoted by Φ𝜎 = (𝑉𝜎 , [𝑞], C𝜎),
is a new CSP formula such that 𝑉𝜎 = 𝑉 \ Λ(𝜎), and the C𝜎

is obtained from C by:

(1) replacing each original constraint 𝑐 ∈ C with the corresponding pinned constraint 𝑐𝜎 , where

vbl(𝑐𝜎) = vbl(𝑐) \ Λ(𝜎) and 𝑐𝜎 (𝜏) = 𝑐(𝜏 ∧ 𝜎Λ(𝜎)∩vbl(𝑐) ) for any 𝜏 ∈ [𝑞]vbl(𝑐𝜎 )
;

(2) removing all the resulting constraints that have already been satisfied.

Whenever a pinning 𝜎 is applied to a CSP formula Φ = (𝑉, [𝑞], C), we always assume that 𝜎

does not violate any constraint in C. Under this assumption, Φ𝜎
is always well-defined, and we have

𝜇Φ𝜎 = 𝜇𝜎
𝑉\Λ(𝜎) . We use C∗ to denote the set of all possible constraints obtained from pinning some

constraint in C with a non-violating 𝜎, including the unpinned constraints in C. Finally, for each

(possibly pinned) constraint 𝑐 ∈ C∗, we use 𝑐O to denote its original unpinned constraint in C.

2.1.4. The incidence hypergraph. We define the underlying incidence hypergraph of CSP formulas as

follows.

Definition 2.2 (incidence (hyper-)graphs for variables and constraints). Given a CSP formula Φ =

(𝑉, [𝑞], C) , we define two incidence (hyper-)graphs for variables and constraints respectively:

• We define 𝐻Φ = (𝑉, E) to be the hypergraph (with multiple edges allowed), where 𝑉 is the set

of variables in Φ, and E = {vbl(𝑐) | 𝑐 ∈ C}.
• Let 𝐺Φ = Lin(𝐻Φ) to denote the line graph of 𝐻Φ, namely, the vertices in 𝐺Φ are clauses in Φ,

and two clauses 𝑐1, 𝑐2 are adjacent in 𝐺Φ if and only if vbl(𝑐1) ∩ vbl(𝑐2) ≠ ∅.
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In particular, when the context of Φ is clear, we say a subset of variables 𝑉 ′ ⊆ 𝑉 is connected if the

induced sub-graph 𝐻Φ [𝑉 ′] is connected and say a subset of constraints C′ ⊆ C is connected if the

induced sub-graph 𝐺Φ [C′] is connected.

Similar to the density of random formulas (the ratio between the number of clauses and the number

of variables), we define the density of hypergraphs as the ratio between the number of hyperedges and

the number of vertices.

2.2. Lovász local lemma. The Lovász local lemma is a gem in the probabilistic method of combinatorics

and has inseparable connections with the solution space of CSPs [EL75]. By viewing the violation of

each constraint as a bad event, the celebrated (variable framework) Lovász local lemma gives a sufficient

criterion for a CSP solution to exist:

Theorem 2.3 (Erdős and Lovász [EL75]). Given a CSP formula Φ = (𝑉, [𝑞], C), if the following holds

∃𝑥 ∈ (0, 1)C s.t. ∀𝑐 ∈ C : P [¬𝑐] ≤ 𝑥(𝑐)
∏
𝑐′∈C

vbl(𝑐)∩vbl(𝑐′ )≠∅

(1 − 𝑥(𝑐′)),(2)

then

P
[∧
𝑐∈C

𝑐

]
≥

∏
𝑐∈C
(1 − 𝑥(𝑐)) > 0.

When the condition (2) is met, the probability of any event in the uniform distribution 𝜇 over

all satisfying assignments can be well approximated by the probability of that event in the product

distribution. This was observed in [HSS11]:

Theorem 2.4 (Haeupler, Saha, and Srinivasan [HSS11]). Given a CSP formula Φ = (𝑉, [𝑞], C), if (2)

holds, then for any event 𝐴 that is determined by the assignment on a subset of variables vbl(𝐴) ⊆ 𝑉 ,

P
[
𝐴 |

∧
𝑐∈C

𝑐

]
≤ P (𝐴)

∏
𝑐∈C

vbl(𝑐)∩vbl(𝐴)≠∅

(1 − 𝑥(𝑐))−1.

3. Structural properties of random hypergraphs

Our strategy to prove main results in Theorem 1.2 and Theorem 1.4 is to establish that both instances

possess certain structural properties that enable efficient counting and sampling algorithms. In this

section, we will develop a “nice property” (formally defined in Definition 3.12) for the underlying

incidence hypergraph. We claim that once this nice property holds for the hypergraph with specific

parameters, we can efficiently count and sample solutions. Finally, we demonstrate that the conditions

in Theorem 1.2 and Theorem 1.4 fulfill the desired property.

Recall the definition of incidence hypergraphs in Definition 2.2. We then present our claim as

Theorem 3.2, with the “nice property” formally defined later in this section in Definition 3.12. We note

that Condition 3.1 only makes assumptions to the hypergraph 𝐻Φ, but not the atomic bad events for

each constraint.

Condition 3.1 (structural condition for atomic CSPs). For the atomic CSP instance Φ = (𝑉, [𝑞], C), its
incidence hypergraph 𝐻Φ is (𝑘, 𝛼, 𝜀1, 𝜀2, 𝜂, 𝜌, 𝑝1, 𝑝2)-nice with parameters satisfying:

• 𝑘 ≥ 30, 𝛼 ≤ 𝑞𝑘 , 𝜂𝑘 ≥ 4, and e(𝜌𝑘𝛼)𝜂 = 1;
• 𝜀1 = 2𝜂, 𝑝1 = 6𝑘7, 𝜀2 = 12𝑘5

(1−𝜂)𝜂𝑝1 = 2
𝑘2 (1−𝜂)𝜂 ≤

1
𝑘

, and 𝑝2 = e𝑘2.

Theorem 3.2 (counting/sampling for atomic CSPs). Assume Φ = (𝑉, [𝑞], C) is a satisfiable atomic CSP
instance satisfying Condition 3.1. Then for any 𝜀 > 0, there exist the following algorithms, both with
running time (𝑛/𝜀)poly(log 𝑞,𝑘,𝛼) :

• (counting) A deterministic algorithm that outputs 𝑍 which is an 𝜀-approximation of the number of
solutions 𝑍 (Φ) of Φ, i.e., (1 − 𝜀)𝑍 (Φ) ≤ 𝑍 ≤ (1 + 𝜀)𝑍 (Φ);
• (sampling) An algorithm that outputs a random assignment 𝑋 ∈ [𝑞]𝑉 that is 𝜀-close in total

variation distance to 𝜇Φ, the uniform distribution over all solutions of Φ.
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Also, we claim that both conditions in Theorems 1.2 and 1.4 satisfy the desired structural properties.

Theorem 3.3. Both the random 𝑘-SAT instance under the condition in Theorem 1.2 and the random
hypergraph coloring instance under the condition in Theorem 1.4 satisfy Condition 3.1 with high probability.

Note that the condition in Theorem 1.2 is below the explicit threshold 𝛼 < 1.3836 · 2𝑘/𝑘 , as

established in [FS96, Theorem 1.3]. Similarly, the condition in Theorem 1.4 falls below the explicit

threshold 𝛼 < 𝑞𝑘−1 ln 𝑘 , as given in [DFG15, Theorem 1.1]. As a result, the instances described in

Theorems 1.2 and 1.4 are satisfiable with high probability under respective conditions. Consequently,

Theorems 3.2 and 3.3 together imply Theorems 1.2 and 1.4.

The plan goes as follows: For the rest of this section, we formally define the structural properties and

verify that Theorem 3.3 holds. Theorem 3.2 will be proved later in Sections 4 and 5.

We now start to introduce the desired structural properties of the CSP formula. Most of the properties

and proofs of random CSP formulas were presented in [GGGY21, HWY23] using different parameters.

Here, we will adapt the proofs to our parameters and show that all properties hold in the uniform

hypergraph model as well.

Let H𝑘 be the set of all 𝑘-uniform hypergraphs, and H≤𝑘 be the set of hypergraphs where each

hyperedge contains at most 𝑘 vertices. Now we can describe the following properties for hypergraphs.

Property 3.4 (bounded maximum degree). Given a hypergraph 𝐻 = (𝑉, E). The maximum degree
Δ = Δ(𝐻) is at most 4𝑘𝛼 + 6 log 𝑛.

Property 3.5 (edge expansion). For 𝜂, 𝜌 ∈ (0, 1), we say a hypergraph 𝐻 = (𝑉, E) ∈ H≤𝑘 satisfies
(𝜂, 𝜌)-edge expansion if for any ℓ ≤ 𝜌 |E | and any ℓ hyperedges 𝑒1, . . . , 𝑒ℓ ∈ E, it holds����� ℓ⋃

𝑖=1

𝑒𝑖

����� ≥ (1 − 𝜂)𝑘ℓ.
Property 3.6 (bounded neighbourhood growth). For any 𝑒 ∈ E and any ℓ ≥ 1, the number of connected
subsets of hyperedges containing 𝑒 of size ℓ is at most 𝑛3(𝑝2𝛼)ℓ .

Similar to the approaches in [GGGY21, HWY23], a crucial component of our algorithm for random

instances involves identifying high-degree vertices, as well as those whose marginal distributions may

be significantly affected by high-degree ones. We begin with the identifying subroutine.

Definition 3.7 (high-degree vertices). Given a hypergraph 𝐻 = (𝑉, E) with average degree 𝑑, and a

subset of vertices 𝑉 ′ ⊆ 𝑉 , let HD(𝑉 ′) ≜ {𝑣 ∈ 𝑉 ′ | deg(𝑣) ≥ 𝑝1𝛼} denote the set of high-degree vertices

in 𝑉 ′.

Algorithm 1: IdentifyBad(𝑉0) [HWY23]

Instance :a hypergraphH = (𝑉, E) with average degree 𝑑;

Input :a set of vertices 𝑉0 ⊆ 𝑉 ;

Output :a set of bad vertices 𝑉bad(𝑉0) starting from 𝑉0 and a set of bad hyperedges Ebad(𝑉0);
1 Initialize 𝑉bad(𝑉0) ← HD(𝑉0) and Ebad(𝑉0) = ∅;
2 while ∃𝑒 ∈ E \ Ebad(𝑉0) such that |𝑒 ∩𝑉bad(𝑉0) | > 𝜀1𝑘 do
3 Update 𝑉bad(𝑉0) ← 𝑉bad(𝑉0) ∪ 𝑒 and Ebad(𝑉0) ← Ebad(𝑉0) ∪ {𝑒}
4 return 𝑉bad(𝑉0) and Ebad(𝑉0)

Throughout, we will use the notation 𝑉bad = 𝑉bad(𝑉) and Ebad = Ebad(𝑉) if the hypergraph 𝐻 =

(𝑉, E) is clear from the context. The set of good vertices 𝑉good ≜ 𝑉 \𝑉bad and the set of good constraints
Egood ≜ E \ Ebad is defined to be the set of remaining variables/hyperedges.

Fact 3.8 (bounded-degree for good vertices). For every good vertex 𝑣 ∈ 𝑉good, it holds deg(𝑣) ≤ 𝑝1𝛼.

Fact 3.9 (bounded fraction of good vertices). For every good hyperedge 𝑒 ∈ Egood, it holds (1 − 𝜀1)𝑘 ≤
|𝑒 ∩𝑉good | ≤ 𝑘 .
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The following structural properties are useful in our counting and sampling algorithms.

Property 3.10 (bounded number of bad vertices). Given a hypergraph 𝐻 = (𝑉, E), for any 𝑉0 ⊆ 𝑉 ,
|𝑉bad(𝑉0) | ≤ 4𝜀−11 |HD(𝑉0) |, where 𝑉bad(𝑉0) is obtained from Algorithm 1.

Property 3.11 (bounded fraction of bad hyperedges). Given a hypergraph 𝐻 = (𝑉, E), let Ebad = Ebad(𝑉)
be the set of bad hyperedges obtained from Algorithm 1. For any ℓ ≥ log 𝑛 and any connected subset of
hyperedges in Lin(𝐻) of size ℓ, the number of bad hyperedges among them is at most 𝜀2ℓ.

Definition 3.12 (nice hypergraph). We say a hypergraph 𝐻 = (𝑉, E) is (𝑘, 𝛼, 𝜀1, 𝜀2, 𝜂, 𝜌, 𝑝1, 𝑝2)-nice
if with the choice of 𝑝1 at Definition 3.7 and 𝜀1 at Algorithm 1, the hypergraph 𝐻:

• is inH≤𝑘 and has density 𝛼 where 𝛼 ≤ 𝑞𝑘 ;

• satisfies bounded maximum degree defined at Property 3.4;

• satisfies (𝜂, 𝜌)-constraint expansion defined at Property 3.5;

• satisfies bounded neighbourhood growth with parameter 𝑝2 at Property 3.6;

• satisfies bounded number of bad vertices with parameter 𝜀1 at Property 3.10;

• satisfies bounded fraction of bad hyperedges with parameter 𝜀2 at Property 3.11;

• has no connected components of size ℓ ≥ log 𝑛 in the line graph induced by bad hyperedges.

The following key lemma shows that if all parameters (𝑘, 𝛼, 𝜀1, 𝜀2, 𝜂, 𝜌, 𝑝1, 𝑝2) satisfy Condition 3.1,

then the underlying incidence hypergraphs of random 𝑘-SAT formulas is nice with probability 1−𝑜(1/𝑛).

Lemma 3.13. For any fixed parameters 𝑘, 𝛼, 𝜂, 𝜌, 𝜀1, 𝑝1, 𝜀2, 𝑝2 where 𝜂𝑘 ≥ 4, e(𝜌𝑘𝛼)𝜂 ≤ 1, 𝜀1 = 2𝜂,
6𝑘5 ≤ 𝑝1 ≤ e𝑘−2𝛼, 𝜀2 = 12𝑘5/((1 − 𝜂)𝜂𝑝1) and 𝑝2 = e𝑘2, with probability 1 − 𝑜(1/𝑛) over the choice
of random 𝑘-SAT formulas Φ = Φ(𝑘, 𝑛, 𝑚) with density 𝛼, 𝐻Φ is (𝑘, 𝛼, 𝜀1, 𝜀2, 𝜂, 𝜌, 𝑝1, 𝑝2)-nice.

The proof of Lemma 3.13 is deferred to Appendix A. In fact, the same result also holds for random

𝑘-uniform hypergraphs. The following lemma states that if the incidence hypergraph of a random

𝑘-SAT formula satisfies some structural property with high probability, then a random hypergraph also

satisfies the same property with high probability.

Lemma 3.14. Suppose 𝑘 ≥ 3 and 𝛼 are constants. Let P be a property for hypergraphs (i.e., P is a subset
of hypergraphs). If the probability of 𝐻Φ belonging to P is 1 − 𝑜(1/𝑛), over the choice of random 𝑘-SAT
formulas Φ ∼ Φ(𝑘, 𝑛, ⌊𝛼𝑛⌋) with density 𝛼, then a random 𝑘-uniform hypergraph 𝐻 ∼ 𝐻 (𝑘, 𝑛, ⌊𝛼𝑛⌋)
with density 𝛼 belongs to P with probability 1 − 𝑜(1/𝑛) as well.

Proof. Let 𝑚 = ⌊𝛼𝑛⌋, and E𝑘,𝑛,𝑚 be the event that the incidence hypergraphs 𝐻Φ is a 𝑘-uniform

hypergraph with 𝑛 vertices and 𝑚 distinct hyperedges. It is easy to see that

PrΦ∼Φ(𝑘,𝑛,𝑚) [𝐻Φ = 𝐻 | E𝑘,𝑛,𝑚] = Pr𝐻 (𝑘,𝑛,𝑚) [𝐻] ,

namely, the distribution of the incidence hypergraph 𝐻Φ conditional on it being 𝑘-uniform and having

𝑚 distinct hyperedges is the uniform distribution 𝐻 (𝑘, 𝑛, 𝑚).
Note that if 𝑛 is sufficiently large, we obtain that

PrΦ∼Φ(𝑘,𝑛,𝑚) [𝐻Φ is 𝑘-uniform] =
(𝑛 − 1

𝑛
· 𝑛 − 2

𝑛
· · · 𝑛 − 𝑘 + 1

𝑛

)𝑚
≥

(
1 − 𝑘 − 1

𝑛

) (𝑘−1)𝑚
≥ e−𝑘

2𝛼 ,

and

PrΦ∼Φ(𝑘,𝑛,𝑚) [𝐻Φ has two identical hyperedges] ≤
(
𝑚

2

)
𝑘!

𝑛𝑘
≤ 𝑘!𝛼2

2𝑛𝑘
,

which further implies that

PrΦ∼Φ(𝑘,𝑛,𝑚) [E𝑘,𝑛,𝑚] ≥ e−𝑘
2𝛼 − 𝑘!𝛼2

2𝑛𝑘
≥ 1

2
e−𝑘

2𝛼
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for sufficiently large 𝑛. Thus, it follows that

PrΦ∼Φ(𝑘,𝑛,𝑚) [𝐻Φ ∉ P]
≥ PrΦ∼Φ(𝑘,𝑛,𝑚) [𝐻Φ ∉ P | E𝑘,𝑛,𝑚] · PrΦ∼Φ(𝑘,𝑛,𝑚) [E𝑘,𝑛,𝑚]

≥ 1

2
e−𝑘

2𝛼 · Pr𝐻∼𝐻 (𝑘,𝑛,𝑚) [𝐻 ∉ P] .

Since PrΦ∼Φ(𝑘,𝑛,𝑚) [𝐻Φ ∉ P] = 𝑜(1/𝑛), we conclude that Pr𝐻∼𝐻 (𝑘,𝑛,𝑚) [𝐻 ∉ P] = 𝑜(1/𝑛). □

As a corollary, we have the following lemma immediately.

Lemma 3.15. For any fixed parameters 𝑘, 𝛼, 𝜂, 𝜌, 𝜀1, 𝑝1, 𝜀2, 𝑝2 where 𝜂𝑘 ≥ 4, e(𝜌𝑘𝛼)𝜂 ≤ 1, 𝜀1 = 2𝜂,
6𝑘5 ≤ 𝑝1 ≤ e𝑘−2𝛼, 𝜀2 = 12𝑘5/((1 − 𝜂)𝜂𝑝1) and 𝑝2 = e𝑘2, with probability 1 − 𝑜(1/𝑛) over the
choice of all 𝑘-uniform hypergraphs with 𝑛 vertices and density 𝛼, a random 𝑘-uniform hypergraph 𝐻 is
(𝑘, 𝛼, 𝜀1, 𝜀2, 𝜂, 𝜌, 𝑝1, 𝑝2)-nice.

We conclude this section by noting that Theorem 3.3 is simply a combination of Lemmas 3.13 and 3.15.

Here, we do not need the lower bound on 𝑘 in the conditions of Theorems 1.2 and 1.4 as the case of

small 𝑘 can be handled by taking a sufficiently large 𝑐.

4. Recursive coupling of random CSPs

In this section, we establish the following theorem regarding the decay of correlations for CSP in-

stances that satisfy the structural properties introduced in the previous section. We note that Theorem 1.7

from introduction is an immediate consequence of Theorems 3.3 and 4.1.

Theorem 4.1. Let Φ = (𝑉, [𝑞], C) be an satisfiable atomic CSP formula satisfying Condition 3.1. Let
𝑐0 ∈ C be an arbitrary constraint. There exists a coupling (𝑋,𝑌 ) of 𝜇C and 𝜇C\{𝑐0} such that for any
integer log 𝑛 ≤ 𝑀 ≤ 𝜌𝑚, it holds that

Pr [𝑑Ham(𝑋,𝑌 ) ≥ 𝑘 · 𝑀] ≤ 2−𝑀 .

Theorem 4.1 asserts that for CSP instances satisfying the specified structural properties, the discrep-

ancy between uniform satisfying assignments induced by any particular constraint decays exponentially.

4.1. The coupling procedure. The coupling in Theorem 4.1 is the constraint-wise recursive coupling

introduced in [WY24]. This coupling procedure, denoted as Couple(E, F , 𝜎, 𝜏), is formally described

in Algorithm 2. The procedure takes as inputs:

• a pair of collections of pinned atomic constraints E, F ⊆ C∗, corresponding to two formulas;

• a pair of partial assignments 𝜎, 𝜏 ∈ [𝑞]Λ, specified on the same subset Λ ⊆ 𝑉 of variables.

It is assumed that both pinned formulas E𝜎
and F 𝜏

are satisfiable. The objective of the procedure is

to generate a pair of random assignments (𝑋,𝑌 ) ∈ [𝑞]𝑉 × [𝑞]𝑉 , such that marginally 𝑋 ∼ 𝜇𝜎
E and

𝑌 ∼ 𝜇𝜏
F , while minimizing the discrepancy between 𝑋 and 𝑌 .

The validity of this coupling is ensured by the following proposition. A similar correctness result

was proven under a stronger local lemma condition in [WY24, Lemma 3.3].

Proposition 4.2. Assume that the atomic CSP formula Φ = (𝑉, [𝑞], C) is satisfiable. For any constraint
𝑐0 ∈ C, the procedure Couple(C \ {𝑐0}, C,∅,∅) terminates with probability 1 and returns a pair of
random assignments (𝑋,𝑌 ) ∈ [𝑞]𝑉 × [𝑞]𝑉 such that marginally 𝑋 ∼ 𝜇C\{𝑐0} and 𝑌 ∼ 𝜇C .

Proof sketch. The proof follows the same inductive framework as the proof of [WY24, Lemma 3.3]. We

provide a brief outline here.

First, by applying structural induction in the top-down order of recursion, one can verify the following

induction hypothesis for each recursive call Couple(E, F , 𝜎, 𝜏):
Λ(𝜎) = Λ(𝜏), P[E ∧ 𝜎] > 0, and P[F ∧ 𝜏] > 0.

This induction holds as long as the initial formula with constraints C is satisfiable, and it ensures that

the coupling procedure remains well-defined throughout the recursion.
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Algorithm 2: Couple(E, F , 𝜎, 𝜏) [WY24]

Instance :an atomic CSP formula Φ = (𝑉, [𝑞], C);
Input : two subsets of pinned formulas E, F ⊆ C∗, and two partial assignments 𝜎, 𝜏 ∈ [𝑞]Λ

specified on the same subset Λ ⊆ 𝑉 of variables;

Output :a pair of assignments (𝑋,𝑌 ) ∈ [𝑞]𝑉 × [𝑞]𝑉 ;

1 if E𝜎 = F 𝜏 then
2 let (𝑋,𝑌 ) be drawn according to the coupling of 𝜇𝜎

E and 𝜇𝜏
F that always satisfies

𝑋𝑉\Λ = 𝑌𝑉\Λ;

3 return (𝑋,𝑌 );
4 if F 𝜏 ⊈ E𝜎 then
5 choose the smallest 𝑐 ∈ F 𝜏 \ E𝜎

;

6 with probability 𝜇𝜎
E (𝑐) do

7 return Couple (E ∪ {𝑐}, F , 𝜎, 𝜏);
8 else
9 let 𝜋 = False(𝑐) and draw a random 𝜌 ∼ 𝜇𝜏

F,vbl(𝑐) ;

10 return Couple (E, F , 𝜎 ∧ 𝜋, 𝜏 ∧ 𝜌);
11 else
12 choose the smallest 𝑐 ∈ E𝜎 \ F 𝜏

;

13 with probability 𝜇𝜏
F (𝑐) do

14 return Couple (E, F ∪ {𝑐}, 𝜎, 𝜏);
15 else
16 draw a random 𝜋 ∼ 𝜇𝜎

E,vbl(𝑐) and let 𝜌 = False(𝑐) ;

17 return Couple (E, F , 𝜎 ∧ 𝜋, 𝜏 ∧ 𝜌);

Next, observe that in each recursive step, either the size of the symmetric difference E𝜎△F 𝜏

decreases by one, or the number of unassigned variables in 𝜎 and 𝜏 is reduced by at least one. Since

Algorithm 2 terminates when E𝜎 = F 𝜏
, the procedure Couple(E, F , 𝜎, 𝜏) eventually terminates due

to the finiteness of both the number of constraints and the number of variables.

Finally, by applying structural induction in the bottom-up order of recursion, we can verify the

following induction hypothesis to ensure the correctness of the coupling:

Couple(E, F , 𝜎, 𝜏) returns an (𝑋,𝑌 ) such that marginally 𝑋 ∼ 𝜇𝜎
E and 𝑌 ∼ 𝜇𝜏

F .

This induction follows the same steps as the one given in the proof of [WY24, Lemma 3.3]. The

correctness holds as long as the coupling procedure is well-defined and terminates, which we have

already established. □

4.2. The witness tree and witness assignment. The novelty of Theorem 4.1 lies in an improved

analysis of the coupling procedure (Algorithm 2). This new analysis of the coupling establishes an

exponential decay of correlation by leveraging new structural properties of the underlying hypergraph

for the CSP formula. The main slackness in previous analysis of the coupling [WY24] arises from the

use of a combinatorial structure called a 2-tree, originally introduced in [Alo91], serving as a witness

for a large discrepancy between satisfying assignments. To achieve an improved analysis, we employ a

witness tree structure, constructed similarly to the witness tree used in the analysis of the Moser-Tardos

algorithm [MT10]. This replaces the 2-tree with a new certificate for the discrepancy in the coupling.

This use of the Moser-Tardos witness tree is crucial for approaching the satisfiability threshold.

We begin with a formal definition of the execution log for Algorithm 2.

Definition 4.3 (execution log). Given a run of Algorithm 2 from Couple(C\{𝑐0}, C,∅,∅), the execution
log 𝐿 = 𝐿 (C, 𝑐0) = (𝑐1, 𝑐2, . . . , 𝑐ℓ) is a random sequence of (unpinned) constraints from C, constructed

as follows:

• initialize 𝐿 as the empty list;
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• whenever Couple(E, F , 𝜎 ∧ 𝜋, 𝜏 ∧ 𝜌) is recursively called at Line 10 or Line 17, append the

original unpinned constraint 𝑐O ∈ C to the end of 𝐿.

For any sequence (𝑐1, 𝑐2, . . . , 𝑐ℓ) of (unpinned) constraints from C, we say that (𝑐1, 𝑐2, . . . , 𝑐ℓ) is a

proper execution log if it appears in the support of 𝐿 = 𝐿 (C, 𝑐0), i.e.,

Pr [𝐿 = (𝑐1, 𝑐2, . . . , 𝑐ℓ)] > 0.

Recall the definition of the incidence hypergraph in Definition 2.2. The following notion of a witness

tree is inspired by the witness tree introduced for analyzing the Moser-Tardos algorithm [MT10]. A key

distinction in our context is that in the execution log constructed as in Definition 4.3, a constraint can

never appear twice. Thus, the witness tree here is a subgraph of 𝐺Φ.

Definition 4.4 (witness tree). A witness tree 𝑇 is a finite rooted tree with vertex set 𝑉 (𝑇) ⊆ C such

that 𝑇 is a subgraph of 𝐺Φ.

Given a witness tree 𝑇 and a constraint 𝑐 ∈ C, define 𝑇 ⊕ 𝑐 as the witness tree 𝑇 ′ obtained as follows:

• if 𝑇 = ∅, then 𝑇 ′ is the rooted tree containing a single vertex 𝑐;

• otherwise, if ∃𝑐′ ∈ 𝑉 (𝑇) such that vbl(𝑐) ∩ vbl(𝑐′) ≠ ∅, then 𝑇 ′ is obtained by adding 𝑐 as a

child of the deepest such 𝑐′ in 𝑇 , breaking ties by choosing the lexicographically smallest 𝑐′ in

case multiple 𝑐′s with the same largest depth exist;

• otherwise, 𝑇 ′ = 𝑇 .

Given a proper execution log 𝐿 = (𝑐1, 𝑐2, . . . , 𝑐ℓ), the witness tree of the execution log 𝐿, denoted by

𝑇 = 𝑇 (𝐿), is defined as follows: Let 𝑇𝑖 = 𝑇𝑖−1 ⊕ 𝑐𝑖 for 1 ≤ 𝑖 ≤ ℓ and initialize 𝑇0 = ∅. Thus, 𝑇 (𝐿) = 𝑇ℓ .

The following proposition states several basic properties of the witness tree. The proof is straightfor-

ward and is therefore omitted.

Proposition 4.5. Let 𝐿 be a proper execution log, and let 𝑇 = 𝑇 (𝐿) be the rooted tree constructed by
Definition 4.4. For each 𝑐 ∈ 𝑇 , denote the depth of 𝑐 in 𝑇 as dep(𝑐). The following properties hold:

(1) 𝑇 is a witness tree, i.e., 𝑇 is a rooted tree and is a subgraph of 𝐺Φ.
(2) |𝑉 (𝑇) | = |𝐿 |, meaning that every constraint in 𝐿 is included as a vertex in 𝑇 .
(3) For any distinct 𝑐, 𝑐′ ∈ 𝑉 (𝑇) with dep(𝑐) = dep(𝑐′), it holds that vbl(𝑐) ∩ vbl(𝑐′) = ∅.
(4) For any 𝑐, 𝑐′ ∈ 𝑉 (𝑇), if vbl(𝑐) ∩ vbl(𝑐′) ≠ ∅ and 𝑐′ appears later than 𝑐 in the execution log 𝐿,

then dep(𝑐′) > dep(𝑐).

Besides the witness tree, another main source of randomness in the coupling procedure of Algorithm 2

comes from the non-violating partial assignments drawn in Lines 9 and 16 of Algorithm 2. This is

formalized by the following notion of witness assignment.

Definition 4.6 (witness assignment). Given a run of Algorithm 2 from Couple(C \ {𝑐0}, C,∅,∅), the

witness assignment is a random partial assignment 𝜍 constructed as follows:

• initially, 𝜍 = ∅, the empty assignment;

• whenever a recursive call Couple(E, F , 𝜎 ∧ 𝜋, 𝜏 ∧ 𝜌) is made in Line 10 of Algorithm 2, with

𝜋 = False(𝑐) being the unique violating assignment of constraint 𝑐, update 𝜍 ← 𝜍 ∧ 𝜌;

• whenever a recursive call Couple(E, F , 𝜎 ∧ 𝜋, 𝜏 ∧ 𝜌) is made in Line 17 of Algorithm 2, with

𝜌 = False(𝑐) being the unique violating assignment of constraint 𝑐, update 𝜍 ← 𝜍 ∧ 𝜋.

For any witness tree 𝑇 , we define

vbl(𝑇) ≜
⋃

𝑐∈𝑉 (𝑇 )
vbl(𝑐),

which represents the set of all variables involved in the constraints that appear as vertices in 𝑇 . Based

on Proposition 4.5 and definition 4.6, it follows that the witness assignment 𝜍 is a partial assignment

specified over the variables in vbl(𝑇), i.e. 𝜍 ∈ [𝑞]vbl(𝑇 )
, where 𝑇 = 𝑇 (𝐿) is the witness tree of the

execution log 𝐿 that belongs to a run of Algorithm 2 from Couple(C \ {𝑐0}, C,∅,∅).
The witness tree, together with the witness assignment, fully determines the random choices made

by Algorithm 2, except for the optimal coupling step at the end of the recursion.
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Lemma 4.7. Let 𝑇 be any tree in 𝐺Φ rooted at 𝑐0, and let 𝜍 ∈ [𝑞]vbl(𝑇 ) be a partial assignment. Given
the witness tree of the execution log being 𝑇 and the witness assignment being 𝜍 , a run of Algorithm 2 from
Couple(C \ {𝑐0}, C,∅,∅) is fully determined, except for the random choices made in Line 2.

Proof. For each 𝑐 ∈ 𝑉 (𝑇), define var(𝑐) as the set of variables within vbl(𝑐), excluding all variables

within vbl(𝑐′) for any 𝑐′ ∈ 𝑉 (𝑇) such that dep(𝑐′) < dep(𝑐) in 𝑇 and vbl(𝑐′) ∩ vbl(𝑐) ≠ ∅. Note that

var(𝑐) is determined by the witness tree 𝑇 .

Then, the random choices in Line 6 (and Line 13) can be determined by checking whether 𝑐O ∈ 𝑉 (𝑇)
and vbl(𝑐) = var(𝑐O) for the pinned constraint 𝑐 ∈ C∗ picked in Line 5 (and Line 12). Recall that 𝑐O

denotes the original unpinned constraint from C corresponding to 𝑐.

The random assignments generated in Lines 10 and 17 are recorded by the witness assignment 𝜍 ,

and thus can be fully recovered from 𝜍 .

Therefore, a run of Algorithm 2 from Couple(C \ {𝑐0}, C,∅,∅) can be deterministically simulated,

except for the random assignments generated in Line 2. □

4.3. Analysis of the coupling. In this subsection, we utilize the witness tree and witness assignment

defined previously to prove Theorem 4.1.

The following definition describes a random process to simulate Algorithm 2 using both the witness

tree and witness assignment, employing the principle of deferred decisions.

Definition 4.8 (𝑀-truncated process for simulating Algorithm 2 with explicitly identified randomness).
Let 𝔛 ∼ 𝜇C\{𝑐0} and 𝔜 ∼ 𝜇C be drawn independently beforehand. Define the random process

𝑃cp = {(E𝑡 , F𝑡 , 𝜎𝑡 , 𝜏𝑡 , 𝑇𝑡 , 𝜍𝑡 )}𝑡≥0
starting from the initial state (E0, F0, 𝜎0, 𝜏0, 𝑇𝑡 , 𝜍𝑡 ) = (C \ {𝑐0}, C,∅,∅, ∅,∅) as follows:

(1) If E𝜎𝑡

𝑡 = F 𝜏𝑡
𝑡 or |𝑉 (𝑇𝑡 ) | = 𝑀 , the process stops, and (E𝑡 , F𝑡 , 𝜎𝑡 , 𝜏𝑡 , 𝑇𝑡 , 𝜍𝑡 ) is the outcome.

(2) Otherwise, if F 𝜏𝑡
𝑡 ⊈ E𝜎𝑡

𝑡 , let 𝑐 be the smallest pinned constraint in F 𝜏𝑡
𝑡 \ E

𝜎𝑡

𝑡 . We then set

(E𝑡+1, F𝑡+1, 𝜎𝑡+1, 𝜏𝑡+1, 𝑇𝑡+1, 𝜍𝑡+1) as{
(E𝑡 ∪ {𝑐}, F𝑡 , 𝜎𝑡 , 𝜏𝑡 , 𝑇𝑡 , 𝜍𝑡 ) if 𝑐 is satisfied by 𝔛;(
E𝑡 , F𝑡 , 𝜎𝑡 ∧ 𝔛vbl(𝑐) , 𝜏𝑡 ∧𝔜vbl(𝑐) , 𝑇𝑡 ⊕ 𝑐O , 𝜍𝑡 ∧𝔜vbl(𝑐)

)
otherwise.

Here, 𝑐O ∈ C denotes the original unpinned version of 𝑐, and 𝑇𝑡 ⊕ 𝑐O is given in Definition 4.4.

(3) Otherwise, if F 𝜏𝑡
𝑡 ⊆ E𝜎𝑡

𝑡 , let 𝑐 be the smallest pinned constraint in E𝜎𝑡

𝑡 \ F
𝜏𝑡
𝑡 . We then set

(E𝑡+1, F𝑡+1, 𝜎𝑡+1, 𝜏𝑡+1, 𝑇𝑡+1, 𝜍𝑡+1) as{
(E𝑡 , F𝑡 ∪ {𝑐}, 𝜎𝑡 , 𝜏𝑡 , 𝑇𝑡 , 𝜍𝑡 ) if 𝑐 is satisfied by 𝔜;(
E𝑡 , F𝑡 , 𝜎𝑡 ∧ 𝔛vbl(𝑐) , 𝜏𝑡 ∧𝔜vbl(𝑐) , 𝑇𝑡 ⊕ 𝑐O , 𝜍𝑡 ∧ 𝔛vbl(𝑐)

)
otherwise.

Let 𝜇cp
denote the distribution of the outcome (Ecp, F cp, 𝜎cp, 𝜏cp, 𝑇 cp, 𝜍cp) of this process, and let

Lcp = supp(𝜇cp) be its support. LetVcp
denote the set of all possible (E, F , 𝜎, 𝜏, 𝑇, 𝜍) such that

Pr [(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃cp] > 0.

Remark 4.9 (distinctions between Algorithm 2 and Definition 4.8). We note two main distinctions

between Algorithm 2 and Definition 4.8, specifically regarding truncation and the explicitly identified

randomness using the principle of deferred decisions. Both aspects are beneficial for our analyses of

the coupling and algorithmic applications.

• In Definition 4.8, the process is truncated once the size of the witness tree reaches the threshold

𝑀 , whereas Algorithm 2 does not incorporate such truncation.

• In Definition 4.8, all randomness utilized by the process 𝑃cp
is identified with the two pre-

generated random assignments 𝔛 ∼ 𝜇C\𝑐0 and 𝔜 ∼ 𝜇C . In contrast, Algorithm 2 generates

random choices at the moment they are needed. However, by the principle of deferred decisions,

Definition 4.8 still faithfully simulates Algorithm 2 (truncated when the size of the witness

tree reaches 𝑀). Thus, properties we proved for Algorithm 2 (specifically Proposition 4.5 and

Lemma 4.7) also hold for the random process constructed in Definition 4.8.
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The above observation is formalized by the following lemma that upper bounds the correlation decay

of the coupling by the probability of the truncation of the random process 𝑃cp
. The proof of this lemma

is similar to that of [WY24, Lemma 3.9], and is included for completeness.

Lemma 4.10. Assume Φ is satisfiable. Let (𝑋,𝑌 ) be the output of Couple(C \ {𝑐0}, C,∅,∅), and let
(Ecp, F cp, 𝜎cp, 𝜏cp, 𝑇 cp, 𝜍cp) ∼ 𝜇cp be the outcome of the process 𝑃cp. Then, we have

Pr [𝑑Ham(𝑋,𝑌 ) ≥ 𝑘 · 𝑀] ≤ Pr [|𝑉 (𝑇 cp) | = 𝑀] .
Proof. By the construction of witness tree in Definition 4.4 and Proposition 4.5, each time a recursive

call is made to Couple(E, F , 𝜎 ∧ 𝜋, 𝜏 ∧ 𝜌) at Line 10 or Line 17 of Algorithm 2, at most 𝑘 variables are

assigned into 𝜎 and 𝜏, and the size of the current witness tree 𝑇 = 𝑇 (𝐿) increases by one. Furthermore,

by Line 3 of Algorithm 2, the Hamming distance between 𝑋 and𝑌 is upper bounded by the total number

of variables assigned in 𝜎 and 𝜏 during the recursion Couple(C \ {𝑐0}, C,∅,∅). Hence, we have

𝑑Ham(𝑋,𝑌 ) ≥ 𝑘 · 𝑀 =⇒ |𝑉 (𝑇) | ≥ 𝑀.

We now argue that the witness tree 𝑇 = 𝑇 (𝐿), constructed from the execution log 𝐿 of a run of

Algorithm 2 from Couple(C\{𝑐0}, C,∅,∅), can be coupled with the witness tree𝑇 cp
constructed during

the process 𝑃cp
described in Definition 4.8. Specifically, whenever a recursive call to Couple(E, F , 𝜎, 𝜏)

is made in Algorithm 2, with the current witness tree being 𝑇 and witness assignment 𝜍 , the process

𝑃cp
moves to a state (E, F , 𝜎, 𝜏, 𝑇, 𝜍). Under this coupling, the lemma follows immediately.

It is important to note that this coupling between the two processes, Algorithm 2 and 𝑃cp
, does not

hold trivially, because the randomness used in the construction of 𝑃cp
is explicitly identified to the

random satisfying assignments:

𝔛 ∼ 𝜇C\{𝑐0} and 𝔜 ∼ 𝜇C .

Nevertheless, this perfect coupling between Algorithm 2 and 𝑃cp
can be verified by structural induction,

proceeding in the top-down order of recursion, with a strengthened hypothesis: conditioning on the

process 𝑃cp
being at the state (E, F , 𝜎, 𝜏, 𝑇, 𝜍), Algorithm 2 is at the same state, and it further holds:

(3) 𝔛 ∼ 𝜇𝜎
E and 𝔜 ∼ 𝜇𝜏

F .

With (3), the transition probabilities to the next state are identical in both processes. Therefore, the

two processes are perfectly coupled. Additionally, it can be verified that (3) continues to hold for each

possible branch of the process 𝑃cp
. This concludes the proof of the lemma. □

The proof of Theorem 4.1 now reduces to establishing an upper bound of 2−𝑀 on the truncation

probability Pr [|𝑉 (𝑇 cp) | = 𝑀]. A crucial step in this process is the following technical lemma, which

assumes Condition 3.1 and will also play a key role in the algorithmic implication of the coupling later.

Lemma 4.11. Assume Φ is satisfiable. Let 𝔛 ∼ 𝜇C\{𝑐0} and 𝔜 ∼ 𝜇C . For any subset of variables 𝑆 ⊆ 𝑉 ,

∀𝑋 ∈ [𝑞]𝑆 , 𝜇C\{𝑐0} (𝑋) = Pr [𝔛𝑆 = 𝑋] ≤ 𝑞−|𝑆∩𝑉good
| · (1 − e𝑞−(1−𝜀1 )𝑘)−|𝑆 | 𝑝1𝛼;

∀𝑌 ∈ [𝑞]𝑆 , 𝜇C (𝑌 ) = Pr [𝔜𝑆 = 𝑌 ] ≤ 𝑞−|𝑆∩𝑉good
| · (1 − e𝑞−(1−𝜀1 )𝑘)−|𝑆 | 𝑝1𝛼.

Proof. We only prove the first inequality, and the second one follows similarly. For any 𝜏 ∈ [𝑞]𝑉bad with

Pr
[
𝔛𝑉

bad
= 𝜏

]
> 0, the following bound holds:

(4) Pr
[
𝔛vbl(𝑇 )∩𝑉

good
= 𝑋vbl(𝑇 )∩𝑉

good
| 𝔛𝑉

bad
= 𝜏

]
≤ 𝑞−|vbl(𝑇 )∩𝑉

good
| · (1 − e𝑞−(1−𝜀1 )𝑘)−|vbl(𝑇 ) | 𝑝1𝛼.

This is because, given the pinning 𝔛𝑉
bad

= 𝜏, the resulting pinned formula has each variable with a

degree of at most 𝑝1𝑑 (by Fact 3.8) and each constraint containing at least (1 − 𝜀1)𝑘 variables (by

Fact 3.9). Applying Theorem 2.4 by setting the parameter 𝑥(𝑐) = e𝑞−(1−𝜀1 )𝑘 for each constraint 𝑐 in the

pinned formula, we derive the bound in (4).

Now, we can bound the probability of 𝔛vbl(𝑇 ) = 𝑋 as follows:

Pr
[
𝔛vbl(𝑇 ) = 𝑋

]
=

∑︁
𝜏∈[𝑞 ]𝑉bad

Pr
[
𝔛𝑉

bad
= 𝜏

]
· Pr

[
𝔛vbl(𝑇 )∩𝑉

good
= 𝑋vbl(𝑇 )∩𝑉

good
| 𝔛𝑉

bad
= 𝜏

]
(by (4)) ≤ 𝑞−|vbl(𝑇 )∩𝑉

good
| · (1 − e𝑞−(1−𝜀1 )𝑘)−|vbl(𝑇 ) | 𝑝1𝛼. □
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We are now ready to prove Theorem 4.1, the main theorem of this section.

Proof of Theorem 4.1. Consider the outcome (Ecp, F cp, 𝜎cp, 𝜏cp, 𝑇 cp, 𝜍cp) ∼ 𝜇cp
of the random process

𝑃cp
in Definition 4.8. We first show that for any rooted tree 𝑇 in 𝐺Φ and any 𝜍 ∈ [𝑞]vbl(𝑇 )

, we have

Pr [𝑇 cp = 𝑇 ∧ 𝜍cp = 𝜍] ≤ 𝑞−2 |vbl(𝑇 )∩𝑉
good
| ·

(
1 − e𝑞−(1−𝜀1 )𝑘

)−2 |vbl(𝑇 ) | 𝑝1𝛼
.(5)

Recall the pre-generated 𝔛 ∼ 𝜇C\{𝑐0} and 𝔜 ∼ 𝜇C , used in the construction of the process 𝑃cp
and 𝜍cp

.

By Lemma 4.7, there are two partial assignments 𝑋,𝑌 ∈ [𝑞]vbl(𝑇 )
determined by 𝑇 and 𝜍 such that

(6) 𝑇 cp = 𝑇 ∧ 𝜍cp = 𝜍 =⇒ 𝔛vbl(𝑇 ) = 𝑋 ∧𝔜vbl(𝑇 ) = 𝑌 .

Since 𝔛 and 𝔜 are independent, the inequality in (5) follows from (6) and Lemma 4.11.

We proceed to prove Theorem 4.1. According to Definition 4.8, all nonempty witness trees 𝑇 cp
must

be rooted at 𝑐0. Let T𝑐0
𝑀

denote the set of witness trees of size 𝑀 rooted at 𝑐0. Then, we have

Pr [𝑑Ham(𝑋,𝑌 ) ≥ 𝑘 · 𝑀]
(by Lemma 4.10) ≤Pr [|𝑉 (𝑇 cp) | = 𝑀]

≤
∑︁

𝑇∈T𝑐0
𝑀

∑︁
𝜍 ∈[𝑞 ]vbl(𝑇 )

Pr [𝑇 cp = 𝑇 ∧ 𝜍cp = 𝜍]

(by (5)) ≤
∑︁

𝑇∈T𝑐0
𝑀

∑︁
𝜍 ∈[𝑞 ]vbl(𝑇 )

𝑞−2 |vbl(𝑇 )∩𝑉
good
| ·

(
1 − e𝑞−(1−𝜀1 )𝑘

)−2 |vbl(𝑇 ) | 𝑝1𝛼

≤
∑︁

𝑇∈T𝑐0
𝑀

𝑞 |vbl(𝑇 ) | · 𝑞−2 |vbl(𝑇 )∩𝑉
good
| ·

(
1 − e𝑞−(1−𝜀1 )𝑘

)−2 |vbl(𝑇 ) | 𝑝1𝛼
.(7)

Note that for 𝑇 ∈ T𝑐0
𝑀

, the size of vbl(𝑇) can be easily upper bounded by 𝑘𝑀 . We then lower bound��
vbl(𝑇) ∩𝑉good

��
as follows: ��

vbl(𝑇) ∩𝑉good

�� = ��
vbl(𝑇 ∩ Egood) ∩𝑉good

��
(by Fact 3.9) ≥

��
vbl(𝑇 ∩ Egood)

�� − 𝜀1𝑘𝑀
(by Properties 3.5 and 3.11) ≥ (1 − 𝜂) (1 − 𝜀2)𝑘𝑀 − 𝜀1𝑘𝑀.

Therefore, we have

Pr [𝑑Ham(𝑋,𝑌 ) ≥ 𝑘 · 𝑀]

≤
∑︁

𝑇∈T𝑐0
𝑀

𝑞−(2(1−𝜂) (1−𝜀2 )−(1+2𝜀1 ) )𝑘𝑀 ·
(
1 − e𝑞−(1−𝜀1 )𝑘

)−2𝑘𝑀𝑝1𝛼

(by Property 3.6) ≤ 𝑛3 · (𝑝2𝛼)𝑀 · 𝑞−(2(1−𝜂) (1−𝜀2 )−(1+2𝜀1 ) )𝑘𝑀 · (1 − e𝑞−(1−𝜀1 )𝑘)−2𝑘𝑀𝑝1𝛼

≤
(
23 log 𝑛/𝑀 · 𝑝2𝛼 · 𝑞−(2(1−𝜂) (1−𝜀2 )−(1+2𝜀1 ) )𝑘 ·

(
1 − e𝑞−(1−𝜀1 )𝑘

)−2𝑘𝑝1𝛼)𝑀
.

We upper bound each term in the bracket separately.

• Since 𝑀 ≥ log 𝑛, it holds 23 log 𝑛/𝑀 ≤ 8;

• Since 𝑝2 = e𝑘2, it holds 𝑝2𝛼 = e𝑘2𝛼;

• Since 𝜂 = Θ(1/𝑘), 𝜀1 = Θ(1/𝑘) and 𝜀2 = Θ(1/𝑘), we deduce that

2(1 − 𝜂) (1 − 𝜀2) − (1 + 2𝜀1) ≥ 1 − 2(𝜂 + 𝜀1 + 𝜀2) = 1 − Θ
(
1

𝑘

)
,

and hence it holds

𝑞−(2(1−𝜂) (1−𝜀2 )−(1+2𝜀1 ) )𝑘 ≤ 𝑞−𝑘+𝑂 (1) ;
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• Since 𝜀1 = Θ(1/𝑘) and 𝑝1 = Θ(𝑘7), for 𝑘 sufficiently large it holds(
1 − e𝑞−(1−𝜀1 )𝑘

)−2𝑘𝑝1𝛼
= exp

(
Θ

(
e𝑞−(1−𝜀1 )𝑘 · 2𝑘 𝑝1𝛼

))
= exp

(
Θ

(
𝑞−𝑘+𝑂 (1) 𝑘8𝛼

))
= 𝑂 (1),

assuming 𝛼 ≤ 𝑞𝑘

(𝑞𝑘 )𝑐 for a sufficiently large universal constant 𝑐 ≥ 8.

Combining everything above, we conclude with

Pr [𝑑Ham(𝑋,𝑌 ) ≥ 𝑘 · 𝑀] ≤
(
8e𝑘2𝛼 · 𝑞−𝑘+𝑂 (1) · 𝑂 (1)

)𝑀
≤ 2−𝑀 ,

where we assume 𝛼 ≤ 𝑞𝑘

(𝑞𝑘 )𝑐 for some sufficiently large universal constant 𝑐 > 0. □

4.4. Proofs of replica symmetry and non-reconstruction. In this subsection, we leverage the

coupling analysis from previous sections to explore the correlation decay properties for random CSP

formulas. Specifically, we will establish the properties of replica symmetry (Theorem 1.9) and non-

reconstruction (Theorem 1.11) for random CSPs at the considered densities. Additionally, we will

examine a connectivity property of the solution space, known as the looseness property (which will be

formally defined later in Definition 4.12).

It is important to note that while these theorems are stated in the context of random 𝑘-SAT, our

proofs are applicable to a broader class of random CSPs, including random hypergraph colorings.

Proof of Theorems 1.9 and 1.11. Recall the decay of correlation property established in Theorem 4.1,

which implies both replica symmetry and non-reconstruction.

We apply the procedure Couple(E, F , 𝜎, 𝜏) described in Algorithm 2 to construct a coupling between

two instances obtained from the same set of constraints C, differing only in the pinning on one variable.

Specifically, we consider the coupling procedure Couple(E, F , 𝜎, 𝜏) with the following initial states:

• The initial set of constraints are E = F = C;

• The initial assignments 𝜎, 𝜏 are both specified on just 𝑣, with 𝜎(𝑣) = 𝑥1 and 𝜏(𝑣) = 𝑥2.

The key proofs for the coupling procedure in Section 4 apply to this setting. In particular, the correctness

follows directly from the proof of Proposition 4.2. Thus, Couple(E, F , 𝜎, 𝜏) returns (𝑋,𝑌 ) such that

𝑋 ∼ 𝜇𝜎
C and 𝑌 ∼ 𝜇𝜏

C . Since all pinned constraints in the initial discrepancy set E𝜎△F 𝜏
must include 𝑣,

they are connected in 𝐺Φ. Hence, the proof for Proposition 4.5 holds in this case as well. As a result,

following the same reasoning as in Theorem 4.1, we can establish that for the pair (𝑋,𝑌 ) returned by

this Couple(E, F , 𝜎, 𝜏), we have

(8) Pr [𝑑Ham(𝑋,𝑌 ) ≥ 𝑘 · 𝑀] ≤ 𝑑 · 2−𝑀 .

The extra factor of 𝑑 in the probability bound comes from the need to bound the number of witness

trees rooted at a constraint containing 𝑣, rather than at a single constraint 𝑐0. While Condition 3.1

technically holds with width 𝑘 − 1 after pinning one variable, the proof of Theorem 4.1 is robust enough

to proceed with this slightly weakened Condition 3.1, thereby implying (8).

Finally, we conclude the proof:

• Theorem 1.9 follows from the exponential decay of correlation established in (8);

• Theorem 1.11 also follows from (8), as with high probability, the discrepancy at 𝑣 does not affect

the assignment on 𝐵𝐻 (𝑣, 𝑟) when 𝑟 is large enough. □

Recent work has focused on exploring the solution space of random 𝑘-SAT through various notions

of connectivity. One way to characterize connectivity of the solution space is looseness considered

in [AC08, CGG
+
24], basically saying one can obtain another solution with some variable flipped without

overall flipping too many variables.

Definition 4.12 (looseness). Let Φ = (𝑉,𝐶) be a SAT formula with |𝑉 | = 𝑛. A variable 𝑣 ∈ 𝑉 is said to

be 𝑀-loose with respect to a satisfying assignment 𝜎 ∈ ΩΦ if there exists another satisfying assignment

𝜏 ∈ ΩΦ such that 𝜏(𝑣) ≠ 𝜎(𝑣) and 𝑑Ham(𝜎, 𝜏) ≤ 𝑀 .
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For a random 𝑘-SAT formula Φ ∼ Φ(𝑘, 𝑛, ⌊𝛼𝑛⌋), we say that Φ is 𝑀-loose if, with high probability

over the pair (Φ, 𝜎), where 𝜎 ∼ 𝜇Φ, all variables 𝑣 ∈ 𝑉 are 𝑀-loose with respect to 𝜎.

Looseness is conjectured to hold for random 𝑘-SAT up to the clustering threshold 𝛼clust ≈ 2𝑘 (ln 𝑘)/𝑘
[AC08, Conjecture 1]. Here, we prove looseness at the considered densities.

Theorem 4.13 (looseness of random 𝑘-SAT). Under the condition of Theorem 1.2, the random 𝑘-SAT
formula Φ(𝑘, 𝑛, ⌊𝛼𝑛⌋) is (poly(𝑘) log 𝑛)-loose.

Proof. We will prove Theorem 4.13, by modifying the random process introduced in Definition 4.8 to

find a local neighbor of a solution. The modified process proceeds as follows.

The input consists of an atomic CSP formula Φ = (𝑉, [𝑞], C), a solution 𝜎in ∈ ΩΦ, and a variable

𝑣 ∈ 𝑉 . The process produces an output assignment 𝜎out ∈ ΩΦ as described below:

(1) Choose an arbitrary value 𝑥 ∈ [𝑞] \
{
𝜎in(𝑣)

}
.

(2) Run the random process in Definition 4.8 with the following alterations:

• The initial sets of constraints are E0 = F0 = C, and the initial partial assignments are both

specified only at 𝑣, with 𝜎0(𝑣) = 𝜎in(𝑣) and 𝜏0(𝑣) = 𝑥;

• Set 𝔛 as 𝜎in
and 𝔜 ∼ 𝜇

𝜏0
C . That is, 𝔜 ∈ ΩC is chosen uniformly at random conditioned on

𝔜(𝑣) = 𝑥.

Let (E, F,𝝈, 𝝉,𝑻, 𝝇) be the outcome of the random process.

(3) If the outcome (E, F,𝝈, 𝝉,𝑻, 𝝇) satisfy that |𝑻 | = 𝑀 , then let 𝜎out ← 𝜎in
. Otherwise, update

𝜎in
by changing the values of the variables assigned in 𝝉 to 𝝉, i.e. set 𝜎out ← 𝝉 ∧ 𝜎in

𝑉\Λ(𝝉) .

We can make the following observations about this process:

• Similar to Algorithm 2 or Definition 4.8, this random process is an idealized algorithm, as it

requires sampling from the non-trivial distribution 𝜇
𝜏0
C . The process is constructed to prove the

looseness of random CSP formulas (Theorem 4.13).

• In Item 2, the sets of pinned constraints E𝜎
and F 𝜏

may have discrepancies at the constraints

involving 𝑣. Since these constraints are connected in 𝐺Φ, the proof for Proposition 4.5 hold in

this setting as well.

• In Item 3, if the outcome (E, F,𝝈, 𝝉,𝑻, 𝝇) satisfies |𝑻 | < 𝑀 , then by Definition 4.8, we must

have E
𝝈 = F

𝝉
. Since 𝔛 = 𝜎in

, the output assignment 𝜎out
is a satisfying assignment with

𝜎out(𝑣) ≠ 𝜎in(𝑣) and 𝑑Ham(𝜎in, 𝜎out) ≤ 𝑘𝑀 .

Finally, Theorem 4.13 follows from applying the same argument used in the proofs of Theorems 1.9

and 1.11, by invoking Theorem 4.1 to the setting where the initial instances differ in one variable rather

than in one constraint. □

5. Linear program for counting and sampling

In this section, we introduce a linear programming approach that translates the coupling result

from the previous section into algorithms for counting and sampling, and prove Theorem 3.2. Similar

to the coupling, this linear program is adapted from the one in [WY24], with key modifications to

accommodate the criticality of random instances.

5.1. Marginal probabilities. We introduce the marginal probabilities associated with the coupling

procedure, which correspond to the variables of the linear program.

Consider an atomic CSP formula Φ = (𝑉, [𝑞], C), and let 𝑐0 ∈ C be an arbitrary constraint. Fix an

integer 𝑀 ≥ 1. Recall the random process 𝑃cp = 𝑃
cp

𝑀
= {(E𝑡 , F𝑡 , 𝜎𝑡 , 𝜏𝑡 , 𝑇𝑡 , 𝜍𝑡 )}𝑡≥0 and its outcome

distribution 𝜇cp = 𝜇
cp

𝑀
, along with their supportsVcp

and Lcp
, as constructed in Definition 4.8.

We define a family of marginal probabilities induced by the random process 𝑃cp
.

Definition 5.1 (marginal probabilities). Let 𝑋 and 𝑌 be generated as follows:

• draw (E, F,𝝈, 𝝉,𝑻, 𝝇) ∼ 𝜇cp
;

• draw 𝑋 ∼ 𝜇𝝈
E

, and similarly 𝑌 ∼ 𝜇𝝉
F

.
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For each (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ Vcp
, we define the following pair of marginal probabilities:

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) ≜ Pr [(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃cp | 𝑋 = 𝒙] ,

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) ≜ Pr [(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃cp | 𝑌 = 𝒚] .

where 𝒙, 𝒚 ∈ [𝑞]𝑉 are arbitrary assignments satisfying E ∧ 𝜎 and F ∧ 𝜏, respectively.

Note that each marginal probability 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) is defined by conditioning on 𝑋 being an arbitrary

assignment 𝒙 ∈ [𝑞]𝑉 that satisfies E ∧ 𝜎 (and similarly for each 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) ). The well-definedness

of these probabilities is ensured by the following proposition.

Proposition 5.2. Assume Φ is satisfiable. Fix any (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ Vcp. The following sets are
nonempty:

ΩE∧𝜎 ≜ {𝜋 ∈ [𝑞]𝑉 | 𝜋 satisfies E ∧ 𝜎},
ΩF∧𝜏 ≜ {𝜋 ∈ [𝑞]𝑉 | 𝜋 satisfies F ∧ 𝜏}.

Furthermore, for any 𝒙, 𝒙′ ∈ ΩE∧𝜎 and 𝒚, 𝒚′ ∈ ΩF∧𝜏 , it holds that

Pr [(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃cp | 𝑋 = 𝒙] = Pr [(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃cp | 𝑋 = 𝒙′] ,
Pr [(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃cp | 𝑌 = 𝒚] = Pr [(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃cp | 𝑌 = 𝒚′] .

This means that 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) and 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) are well-defined. Moreover, it holds that

(9) 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 𝜇C (F ∧ 𝜏) and 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 𝜇C\{𝑐0} (E ∧ 𝜎).

Proposition 5.2 can be proved by following the same argument as in [WY24, Proposition 4.2]. In fact,

the same proof applies as long as the coupling is well-defined. Therefore, we omit the proof here.

The following proposition outlines families of linear constraints satisfied by the marginal probabilities.

Proposition 5.3. Assume Φ is satisfiable. Fix any (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ Vcp. The following properties hold
for 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) and 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) :

(1) It always holds that 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) , 𝑝
𝑌
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈ [0, 1]. In particular,

𝑝𝑋(C\{𝑐0},C,∅,∅,∅,∅) = 𝑝𝑌(C\{𝑐0},C,∅,∅,∅,∅) = 1.

(2) If (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∉ Lcp, then the following holds:
(a) If F 𝜏 ⊈ E𝜎 , let 𝑐 be the smallest constraint in F 𝜏 \ E𝜎 , and define 𝜋 ≜ False(𝑐). Then,

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) =𝑝
𝑋
(E∪{𝑐},F,𝜎,𝜏,𝑇, 𝜍 ) =

∑︁
𝜌∈[𝑞 ]vbl(𝑐)

(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜌) ∈Vcp

𝑝𝑋(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜌) ;

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) =𝑝
𝑌
(E∪{𝑐},F,𝜎,𝜏,𝑇, 𝜍 ) + 𝑝

𝑌

(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜌) ,

for any 𝜌 ∈ [𝑞]vbl(𝑐) such that (E, F , 𝜎 ∧ 𝜋, 𝜏 ∧ 𝜌, 𝑇 ⊕ 𝑐O , 𝜍 ∧ 𝜌) ∈ Vcp.

(b) If F 𝜏 ⊆ E𝜎 , let 𝑐 be the smallest constraint in E𝜎 \ F 𝜏 , and define 𝜌 ≜ False(𝑐). Then,

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) =𝑝
𝑋
(E,F∪{𝑐},𝜎,𝜏,𝑇, 𝜍 ) + 𝑝

𝑋

(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜋 ) ,

for any 𝜋 ∈ [𝑞]vbl(𝑐) such that (E, F , 𝜎 ∧ 𝜋, 𝜏 ∧ 𝜌, 𝑇 ⊕ 𝑐O , 𝜍 ∧ 𝜋) ∈ Vcp;

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) =𝑝
𝑌
(E,F∪{𝑐},𝜎,𝜏,𝑇, 𝜍 ) =

∑︁
𝜋∈[𝑞 ]vbl(𝑐)

(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜋 ) ∈Vcp

𝑝𝑌(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜋 ) .
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(3) Furthermore, it always holds that

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) ·
|ΩE∧𝜎 |
|ΩC\{𝑐0} |

= 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) ·
|ΩF∧𝜏 |
|ΩC |

,

and

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) , 𝑝
𝑌
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ≤ 𝑞−|vbl(𝑇 )∩𝑉

good
| ·

(
1 − e𝑞−(1−𝜀1 )𝑘

)−|vbl(𝑇 ) | 𝑝1𝛼
.

Proof. Items 1 and 2 are derived directly from Definition 5.1 and the well-definedness ensured in

Proposition 5.2, both of which are straightforward to verify.

The equation in Item 3 follows from (9). From the same equation (9), we can further derive that

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 𝜇C (F ∧ 𝜏) ≤ 𝜇C (𝜏) and 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 𝜇C\{𝑐0} (E ∧ 𝜎) ≤ 𝜇C\{𝑐0} (𝜎). Together

with Lemma 4.11, these imply the final inequalities in Item 3. □

5.2. Setting up the linear program. Next, we construct a linear program that that mimics the

marginal probabilities 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) and 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) .

5.2.1. The coupling tree. To set up the linear program, we first construct a recursion tree for the coupling

procedure Couple(C \ {𝑐0}, C,∅,∅), truncating it when the size of the witness tree 𝑇 exceeds 𝑀 .

Definition 5.4 (𝑀-truncated coupling tree). The 𝑀-truncated coupling tree, denoted T = T𝑀 (Φ, 𝑐0), is

a finite rooted tree, where each node in T corresponds to a tuple (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ Vcp
. The tree T

is constructed inductively as follows:

(1) The root of T corresponds to (C \ {𝑐0}, C,∅,∅, ∅,∅), and has depth 0.

(2) For 𝑖 = 0, 1, . . ., consider all nodes (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑉 (T ) of depth 𝑖 in the current tree T .

(a) If 𝜎 violates E or 𝜏 violates F or E𝜎 = F 𝜏
or |𝑉 (𝑇) | = 𝑀 , then (E, F , 𝜎, 𝜏, 𝑇, 𝜍) is left as

a leaf node in T .

(b) Otherwise, if F 𝜏 ⊈ E𝜎
, then pick the smallest 𝑐 ∈ F 𝜏 \E𝜎

and add (E∪{𝑐}, F , 𝜎, 𝜏, 𝑇, 𝜍)
as a child of (E, F , 𝜎, 𝜏, 𝑇, 𝜍) in T . Furthermore, for each 𝜌 ∈ [𝑞]vbl(𝑐)

and 𝜋 = False(𝑐),
add (E, F , 𝜎 ∧ 𝜋, 𝜏 ∧ 𝜌, 𝑇 ⊕ 𝑐O , 𝜍 ∧ 𝜌) as a child of (E, F , 𝜎, 𝜏, 𝑇, 𝜍) in T .

(c) Otherwise, it holds that F 𝜏 ⊆ E𝜎
. Then, pick the smallest 𝑐 ∈ E𝜎 \ F 𝜏

and add (E, F ∪
{𝑐}, 𝜎, 𝜏, 𝑇, 𝜍) as a child of (E, F , 𝜎, 𝜏, 𝑇, 𝜍) in T . Furthermore, for each 𝜋 ∈ [𝑞]vbl(𝑐)

and

𝜌 = False(𝑐), add (E, F , 𝜎 ∧ 𝜋, 𝜏 ∧ 𝜌, 𝑇 ⊕ 𝑐O , 𝜍 ∧ 𝜋) as a child of (E, F , 𝜎, 𝜏, 𝑇, 𝜍) in T .

Let L denote the set of leaf nodes in T . We further define the following sets of leaf nodes:

• Lcoup ≜ {(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ L | E𝜎 = F 𝜏} as the set of “coupled” leaf nodes in T ;

• Ltrun ≜ {(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ L | |𝑉 (𝑇) | = 𝑀} as the set of “truncated” leaf nodes in T ;

• Lvalid ≜ Ltrun ∪ Lcoup as the set of “valid” leaf nodes in T ;

• Linvld ≜ L \ Lvalid as the set of “invalid” leaf nodes in T .

Proposition 5.5. For any satisfiable Φ = (𝑉, [𝑞], C), any 𝑐0 ∈ C and 𝑀 ≥ 1, the 𝑀-truncated coupling
tree T = T𝑀 (Φ, 𝑐0) has a depth of at most 𝑀Δ𝑘 + 1 and a branching number of at most 𝑞2𝑘 , where
Δ = Δ(Φ) is the maximum degree of 𝐺Φ.

Proof. By contradiction, assume there exists a node (E′, F ′, 𝜎′, 𝜏′, 𝑇 ′, 𝜍 ′) ∈ 𝑉 (T ) with depth 𝑀Δ𝑘 + 2.

We track the size of E𝜎△F 𝜏
along the path from the root to (E′, F ′, 𝜎′, 𝜏′, 𝑇 ′, 𝜍 ′), denoting this size

by 𝑡. Initially, by Definition 5.6, we have 𝑡 = 1. At each intermediate node (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑉 (T )
along the path: we either add some constraint 𝑐 into E or F , reducing 𝑡 by 1, or we assign values to 𝜎

and 𝜏 on vbl(𝑐), which increases 𝑡 by at most 𝑘Δ − 1 (since at most 𝑘Δ new elements can be added into

E𝜎△F 𝜏
, and 𝑐 is removed from E𝜎△F 𝜏). In the latter case, the size of 𝑇 grows by one according to

Proposition 4.5. Let 𝑖 denote the number of times this latter operation is executed.

Since the depth of (E′, F ′, 𝜎′, 𝜏′, 𝑇 ′, 𝜍 ′) is 𝑀Δ𝑘 + 2, the above step is repeated for 𝑀Δ𝑘 + 2 times.

Finally, at the node (E′, F ′, 𝜎′, 𝜏′, 𝑇 ′, 𝜍 ′), we still have 𝑡 = |E′𝜎′△F ′𝜏′ | ≥ 0. Therefore,

(𝑘Δ − 1) · 𝑖 + 1 − (𝑀Δ𝑘 + 2 − 𝑖) ≥ 0,

This implies that |𝑇 ′ | = 𝑖 > 𝑀 , which contradicts the truncation condition in Item 2a of Definition 5.4.

Finally, it is easy to observe that each node in T has at most 𝑞2𝑘 children. □
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5.2.2. The linear program. We now present the linear program, constructed on the 𝑀-truncated coupling

tree from Definition 5.4. Each node of the tree, denoted as (E, F , 𝜎, 𝜏, 𝑇, 𝜍), is associated with two

variables mimicking 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) and 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) . The linear constraints of this LP are derived

from the properties listed in Proposition 5.3.

Definition 5.6 (linear program induced by the coupling). Let T = T𝑀 (Φ, 𝑐0) denote the 𝑀-truncated

coupling tree, constructed according to Definition 5.4. Given two parameters 0 ≤ 𝑟− ≤ 𝑟+, we define a

linear program using variables 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) and 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) for all (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑉 (T ):
I. Range constraints:

𝑝𝑋(C\{𝑐0},C,∅,∅,∅) = 𝑝𝑌(C\{𝑐0},C,∅,∅,∅) = 1;

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) , 𝑝
𝑌
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈ [0, 1], ∀(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑉 (T ).

II. Non-leaf constraints: For each non-leaf node (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑉 (T ) \ L:

(a) If F 𝜏 ⊈ E𝜎
, let 𝑐 be the smallest constraint in F 𝜏 \ E𝜎

and 𝜋 = False(𝑐):

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 𝑝𝑋(E∪{𝑐},F,𝜎,𝜏,𝑇, 𝜍 ) =
∑︁

𝜌∈[𝑞 ]vbl(𝑐)

𝑝𝑋(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜌) ;

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 𝑝𝑌(E∪{𝑐},F,𝜎,𝜏,𝑇, 𝜍 ) + 𝑝
𝑌

(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜌) , ∀𝜌 ∈ [𝑞]vbl(𝑐) .

(b) Otherwise, if F 𝜏 ⊆ E𝜎
, let 𝑐 be the smallest constraint in E𝜎 \ F 𝜏

and 𝜌 = False(𝑐):

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 𝑝𝑋(E,F∪{𝑐},𝜎,𝜏,𝑇, 𝜍 ) + 𝑝
𝑋

(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜋 ) , ∀𝜋 ∈ [𝑞]vbl(𝑐) ;

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 𝑝𝑌(E,F∪{𝑐},𝜎,𝜏,𝑇, 𝜍 ) =
∑︁

𝜋∈[𝑞 ]vbl(𝑐)

𝑝𝑌(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜋 ) .

III. Leaf constraints: For each leaf node (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ L:

(a) If it is a coupled leaf (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ Lcoup,

𝑟− · 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) ≤ 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) ≤ 𝑟+ · 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) .

(b) If it is an invalid leaf (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ Linvld,

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 0, if 𝜎 violates E;
𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 0, if 𝜏 violates F .

IV. Truncation constraints: For each truncated leaf node (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ Ltrun
:

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) , 𝑝
𝑌
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ≤ 𝑞−|vbl(𝑇 )∩𝑉

good
| ·

(
1 − e𝑞−(1−𝜀1 )𝑘

)−|vbl(𝑇 ) | 𝑝1𝛼
.

Remark 5.7. This linear program closely resembles the one presented in [WY24], with the primary

distinction being the last class of linear constraints: the truncation constraints. These constraints replace

the “overflow constraints” used in the LP from [WY24]. Notably, in their design of the LP, this class of

overflow constraints also distinguishes their approach from other LP-based algorithms, such as those in

[Moi19, GLLZ19, JPV21, GGGY21], and is considered a key step in approaching the critical threshold in

their context. In contrast, the use of truncation constraints here effectively captures the critical behavior

of random instances and is essential for approaching the critical threshold in this new context.

5.3. Analysis of the linear program. We now establish both the correctness and efficiency of the

linear program constructed earlier.
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5.3.1. Performance of the LP. First, we show that the feasibility of the LP can be checked efficiently.

Proposition 5.8. Assume Condition 3.1. For any 0 ≤ 𝑟− ≤ 𝑟+, the feasibility of the linear program in
Definition 5.6 can be determined within exp(𝑀 · poly(𝑘, log 𝑞, 𝛼)) time.

This result follows directly from Proposition 5.5, as the size of the linear program is bounded by

the size of the 𝑀-truncated coupling tree T = T𝑀 (Φ, 𝑐0), which is at most exp(𝑀 · poly(𝑘, log 𝑞, 𝛼))
according to the bound on maximum degree (Property 3.4) in Condition 3.1.

Next, we prove the soundness of this linear program by showing that the true values of the marginal

probabilities satisfy all the linear constraints.

Lemma 5.9. Assume Φ is satisfiable. The linear program in Definition 5.6 is feasible for

𝑟− = 𝑟+ =
|ΩC\{𝑐0} |
|ΩC |

.

Proof. For each (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑉 (T ), we define the following quantities:

(10) 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 𝜇C (F ∧ 𝜏), 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 𝜇C\{𝑐0} (E ∧ 𝜎).

We will show that they form a feasible solution to the LP described in Definition 5.6 with the parameters

𝑟− = 𝑟+ =
|ΩC\{𝑐0} |
|ΩC | . By Proposition 5.2, these quantities in (10) are consistent with the actual values of

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) , 𝑝
𝑌
(E,F,𝜎,𝜏,𝑇, 𝜍 ) as defined in Definition 5.1, also extending these marginal probabilities

to all nodes in 𝑉 (T ) rather than just Vcp
. Note that compared to Vcp

, which contains only those

(E, F , 𝜎, 𝜏, 𝑇, 𝜍) corresponding to the final outcomes of the 𝑀-truncated coupling procedure, the set

𝑉 (T ) also contains all (E, F , 𝜎, 𝜏, 𝑇, 𝜍) corresponding to the intermediate steps of the coupling.

We then verify that (10) satisfies all linear constraints of the LP in Definition 5.1:

• Range and Non-leaf constraints: These constraints hold by Items 1 and 2 of Proposition 5.3.

• Leaf constraints: Item III.b is a direct consequence of (10). To verify Item III.a, note that for

(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ Lcoup, we have E𝜎 = F 𝜏
, which implies that |ΩE∧𝜎 | = |ΩF∧𝜏 |. Thus:

– If |ΩE∧𝜎 | = |ΩF∧𝜏 | > 0, then Item III.a follows directly from Item 3 of Proposition 5.3.

– If |ΩE∧𝜎 | = |ΩF∧𝜏 | = 0, then 𝜇C (F ∧ 𝜏) = 𝜇C\{𝑐0} (E ∧ 𝜎) = 0 and Item III.a holds.

• Truncation constraints: The constraints in Item IV. hold by Item 3 of Proposition 5.3. □

At last, we show that the feasibility of the linear program implies that 𝑟− and 𝑟+ provide respective

lower and upper bounds for
|ΩC\{𝑐0} |
|ΩC | with bounded multiplicative error. With this, we can apply a

binary search to approximate the true value of
|ΩC\{𝑐0} |
|ΩC | .

Lemma 5.10. Assume Condition 3.1. If the LP in Definition 5.6 is feasible for parameters 0 ≤ 𝑟− ≤ 𝑟+,
then it holds that (

1 − 2 · 2−𝑀
)
𝑟− ≤

|ΩC\{𝑐0} |
|ΩC |

≤
(
1 + 2 · 2−𝑀

)
𝑟+.

The proof of Lemma 5.10 relies on the following claim, which provides an upper bound on the

estimated average marginal probabilities for truncated nodes of the coupling tree.

Claim 5.11. Assume Condition 3.1. The following hold for the solution of the LP in Definition 5.6:

1

|ΩC\{𝑐0} |

∑︁
𝒙∈ΩC\{𝑐0}

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Ltrun

with E ∧ 𝜎 satisfied by 𝒙

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) ≤ 2−𝑀 ,

1

|ΩC |
∑︁
𝒚∈ΩC

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Ltrun

with F ∧ 𝜏 satisfied by 𝒚

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) ≤ 2−𝑀 .

Assuming this claim holds, Lemma 5.10 can be proved using the same argument as in the proof of

[WY24, Lemma 4.11]. For completeness, we provide the proof here.
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Proof of Lemma 5.10. Let 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) and 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) denote a feasible solution of the linear

program in Definition 5.6. First, we claim the following equations hold for this feasible solution:

(11)

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈L

valid

with E ∧ 𝜎 satisfied by 𝒙

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 1, for all 𝒙 ∈ ΩC\{𝑐0} ,

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈L

valid

with F ∧ 𝜏 satisfied by 𝒚

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) = 1, for all 𝒚 ∈ ΩC .

These equations follow directly from verifying Definition 5.6. By summing these equations over all

𝒙 ∈ ΩC\{𝑐0} and all 𝒚 ∈ ΩC , we obtain:

(12)

|ΩC\{𝑐0} | =
∑︁

𝒙∈ΩC\{𝑐0}

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈L

valid

with E ∧ 𝜎 satisfied by 𝒙

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) ,

|ΩC | =
∑︁
𝒚∈ΩC

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈L

valid

with F ∧ 𝜏 satisfied by 𝒚

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) .

Thus, we can express |ΩC\{𝑐0} | as follows:

(by (12)) |ΩC\{𝑐0} | =
∑︁

𝒙∈ΩC\{𝑐0}

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈L

valid

with E ∧ 𝜎 satisfied by 𝒙

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 )

=
∑︁

𝒙∈ΩC\{𝑐0}

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

with E ∧ 𝜎 satisfied by 𝒙

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 )

+
∑︁

𝒙∈ΩC\{𝑐0}

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Ltrun

with E ∧ 𝜎 satisfied by 𝒙

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 )

(by Claim 5.11) ≤
∑︁

(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

|ΩE∧𝜎 | · 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) + 2
−𝑀 · |ΩC\{𝑐0} |.

Thus, |ΩC\{𝑐0} | can be bounded as:���ΩC\{𝑐0} ��� ∈ [
𝑧̂𝑋,

(
1 + 2 · 2−𝑀

)
𝑧̂𝑋

]
,

where 𝑧̂𝑋 ≜
∑︁

(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

|ΩE∧𝜎 | · 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) .

Similarly, |ΩC | can also be bounded as:��ΩC �� ∈ [
𝑧̂𝑌 ,

(
1 + 2 · 2−𝑀

)
𝑧̂𝑌

]
,

where 𝑧̂𝑌 ≜
∑︁

(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

|ΩF∧𝜏 | · 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) .

Consequently, the ratio |ΩC\{𝑐0} |/|ΩC | is bounded as:

|ΩC\{𝑐0} |
|ΩC |

≤
(
1 + 2 · 2−𝑀

) ∑
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

|ΩE∧𝜎 | · 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 )∑
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

|ΩF∧𝜏 | · 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 )

≤
(
1 + 2 · 2−𝑀

)
𝑟+,

where the last inequality follows from the leaf constraints of the LP (Item III. in Definition 5.6).
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By symmetry, we also have:

|ΩC\{𝑐0} |
|ΩC |

≥
(
1 − 2 · 2−𝑀

) ∑
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

|ΩE∧𝜎 | · 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 )∑
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

|ΩF∧𝜏 | · 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 )

≥
(
1 − 2 · 2−𝑀

)
𝑟− .

Combining these results, we conclude:(
1 − 2 · 2−𝑀

)
𝑟− ≤

|ΩC\{𝑐0} |
|ΩC |

≤
(
1 + 2 · 2−𝑀

)
𝑟+. □

5.3.2. Proof of the average marginal bound (Claim 5.11). To prove Claim 5.11, we introduce an auxiliary

random process induced by the LP feasible solution. This random process plays a key role in the proof

of Claim 5.11, and also forms the foundation for the sampling algorithm derived from the LP.

Definition 5.12 (random path induced by the LP solution). We define the following random process

for generating a random path from the root to a leaf in the 𝑀-truncated coupling tree T = T𝑀 (Φ, 𝑐0),
based on a feasible solution 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) , 𝑝

𝑌
(E,F,𝜎,𝜏,𝑇, 𝜍 ) to the linear program in Definition 5.6.

Let 𝔛lp ∼ 𝜇C\{𝑐0} be a random satisfying assignment. The random process starts at the root

(C \ {𝑐0}, C,∅,∅, ∅,∅) and proceeds as follows at each non-leaf node (E, F , 𝜎, 𝜏, 𝑇, 𝜍) in T :

(1) If F 𝜏 ⊈ E𝜎
, let 𝑐 be the smallest constraint in F 𝜏 \ E𝜎

:

• If 𝑐 is satisfied by 𝔛lp
, move to the child node (E ∪ {𝑐}, F , 𝜎, 𝜏, 𝑇, 𝜍).

• Otherwise, for each 𝜌 ∈ [𝑞]vbl(𝑐)
, move to the child node (E, F , 𝜎 ∧ 𝔛

lp

vbl(𝑐) , 𝜏 ∧ 𝜌, 𝑇 ⊕
𝑐O , 𝜍 ∧ 𝜌) with probability:

𝑝𝑋
(E,F,𝜎∧𝔛lp

vbl(𝑐) ,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜌)

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 )
.

(2) Otherwise, if F 𝜏 ⊆ E𝜎
, let 𝑐 be the smallest constraint in E𝜎 \ F 𝜏

:

• Move to the child node (E, F ∪ {𝑐}, 𝜎, 𝜏, 𝑇, 𝜍) with probability:

𝑝𝑋(E,F∪{𝑐},𝜎,𝜏,𝑇, 𝜍 )

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 )
;

• Alternatively, move to the child node (E, F , 𝜎 ∧ 𝔛lp

vbl(𝑐) , 𝜏 ∧ 𝜌, 𝑇 ⊕ 𝑐O , 𝜍 ∧ 𝔛lp

vbl(𝑐) ), where

𝜌 = False(𝑐), with probability:

𝑝𝑋
(E,F,𝜎∧𝔛lp

vbl(𝑐) ,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝔛
lp

vbl(𝑐) )

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 )
.

Let 𝑃lp
denote the random path generated by this process, and let 𝜇lp

denote its distribution.

By Item II. of Definition 5.6, it is straightforward to verify that the random process in Definition 5.12

generates a root-to-leaf path 𝑃lp
in T . We also have the following probability bounds.

Lemma 5.13. Assume Φ is satisfiable. For each (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑉 (T ), it holds that

Pr
[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp

]
= 𝜇C\{𝑐0} (E ∧ 𝜎) · 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) .

Moreover, conditioned on (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp, it follows that

𝔛lp ∼ 𝜇𝜎
E ,

for each (E, F , 𝜎, 𝜏, 𝑇, 𝜍) such that Pr
[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp

]
> 0.
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Proof. We prove the lemma by structural induction in the top-down manner. The induction basis is the

root node (C \ {𝑐0}, C,∅,∅, ∅,∅), where the lemma follows easily from Definition 5.12.

For the induction step, we only consider the case when F 𝜏 ⊈ E𝜎
, as the complementary case with

F 𝜏 ⊆ E𝜎
is straightforward. Let 𝑐 be the smallest constraint in F 𝜏 \ E𝜎

. We have the following cases:

• Case 1: 𝑐 is satisfied by 𝔛lp
. The process transitions to (E ∪ {𝑐}, F , 𝜎, 𝜏, 𝑇, 𝜍). By the induction

hypothesis, we know that 𝔛lp ∼ 𝜇𝜎
E . Therefore, the event that 𝑐 is satisfied by 𝔛lp

occurs with

probability 𝜇𝜎
E (𝑐). Consequently, we have

Pr
[
(E ∪ {𝑐}, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp

]
(by Definition 5.12) =Pr

[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp

]
· 𝜇𝜎
E (𝑐)

(by I.H.) =𝜇C\{𝑐0} (E ∧ 𝜎) · 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) · 𝜇
𝜎
E (𝑐)

(by the chain rule) =𝜇C\{𝑐0} ((E ∪ {𝑐}) ∧ 𝜎) · 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) .

Additionally, conditioning on moving to (E ∪ {𝑐}, F , 𝜎, 𝜏, 𝑇, 𝜍), it follows that

𝔛lp ∼ 𝜇𝜎
E∪{𝑐} ,

thus completing the proof of this case.

• Case 2: 𝑐 is violated by 𝔛lp
. Let 𝜋 = 𝔛

lp

vbl(𝑐) , then we have 𝜋 = False(𝑐). By the induction

hypothesis, we know that 𝔛lp ∼ 𝜇𝜎
E . Therefore, the event that 𝑐 is violated by 𝔛lp

occurs with

probability

𝜇𝜎
E (¬𝑐) = 𝜇𝜎

E (𝜋).

In this case, for each 𝜌 ∈ [𝑞]vbl(𝑐)
, the process transitions to (E, F , 𝜎 ∧ 𝜋, 𝜏 ∧ 𝜌, 𝑇 ⊕ 𝑐O , 𝜍 ∧ 𝜌)

with probability

𝑝𝑋

(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜌)
𝑝𝑋
(E,F,𝜎,𝜏,𝑇,𝜍 )

. Therefore, for each 𝜌 ∈ [𝑞]vbl(𝑐)
, we have

Pr
[
(E, F , 𝜎 ∧ 𝜋, 𝜏 ∧ 𝜌, 𝑇 ⊕ 𝑐O , 𝜍 ∧ 𝜌) ∈ 𝑃lp

]
(by Definition 5.12) =Pr

[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp

]
· 𝜇𝜎
E (𝜋) ·

𝑝𝑋(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜌)

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 )

(by I.H.) =𝜇C\{𝑐0} (E ∧ 𝜎) · 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) · 𝜇
𝜎
E (𝜋) ·

𝑝𝑋(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜌)

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 )

(by the chain rule) =𝜇C\{𝑐0} (E ∧ 𝜎 ∧ 𝜋) · 𝑝𝑋(E,F,𝜎∧𝜋,𝜏∧𝜌,𝑇⊕𝑐O , 𝜍∧𝜌) .

This concludes the proof for the case when F 𝜏 ⊈ E𝜎
. As we discussed earlier, it proves the lemma. □

The following corollary follows from Lemma 5.13 by the definition of conditional probability.

Corollary 5.14. Assume Φ is satisfiable. For each 𝒙 ∈ ΩC\{𝑐0} and each (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑉 (T ),

Pr
[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp | 𝔛lp = 𝒙

]
=

{
0 if 𝒙 ∉ ΩE∧𝜎 ,

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) if 𝒙 ∈ ΩE∧𝜎 .

Proof. For each 𝒙 ∈ Ω and each (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑉 (T ), we have

(13)

Pr
[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp | 𝔛lp = 𝒙

]
=
Pr

[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp ∧ 𝔛lp = 𝒙

]
Pr

[
𝔛lp = 𝒙

]
(by Definition 5.12) =|ΩC\{𝑐0} | · Pr

[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp ∧ 𝔛lp = 𝒙

]
.

If 𝒙 ∉ ΩE∧𝜎 , then by Lemma 5.13, the above expression equals 0. Therefore, we assume 𝒙 ∈ ΩE∧𝜎 .

By Lemma 5.13, conditioning on the event (E, F , 𝜎, 𝜏, 𝑇, 𝜍), the distribution of 𝜎 is uniform over all
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assignments in ΩE∧𝜎 . Thus, we have

Pr
[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp ∧ 𝔛lp = 𝒙

]
=Pr

[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp

]
· 1

|ΩE∧𝜎 |

(by Lemma 5.13) =
|ΩE∧𝜎 |
|ΩC\{𝑐0} |

· 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) ·
1

|ΩE∧𝜎 |

=
1

|ΩC\{𝑐0} |
· 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) ,

combining this with (13) completes the proof of the corollary. □

We are now ready to prove Claim 5.11.

Proof of Claim 5.11. We will prove the first inequality; the second inequality can be proved by following

a similar approach.

First, we verify the following identity:

(14)

1

|ΩC\{𝑐0} |

∑︁
𝒙∈ΩC\{𝑐0}

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Ltrun

with E ∧ 𝜎 satisfied by 𝒙

𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 )

=
∑︁

𝒙∈ΩC\{𝑐0}

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Ltrun

with E ∧ 𝜎 satisfied by 𝒙

Pr
[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp

]
|ΩE∧𝜎 |

=
∑︁

(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Ltrun

Pr
[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp

]
,

where the first equality follows from Lemma 5.13 and the fact that for each (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑉 (T ),
any assignment 𝒙 that satisfies E ∧ 𝜎 must also satisfy C \ {𝑐0}. The second equality follows from this

same fact and the exchange of the order of summation.

Combining these results, we have the following:∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Ltrun

Pr
[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp

]
≤

∑︁
𝑇 ′∈T𝑐0

𝑀

∑︁
𝜍 ′∈[𝑞 ]vbl(𝑇′ )

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈𝑃lp

𝑇=𝑇 ′∧𝜍=𝜍 ′

Pr
[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp

]
≤

∑︁
𝑇 ′∈T𝑐0

𝑀

∑︁
𝜍 ′∈[𝑞 ]vbl(𝑇′ )

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈𝑃lp

𝑇=𝑇 ′∧𝜍=𝜍 ′

∑︁
𝒙∈ΩE∧𝜎

Pr
[
𝔛lp = 𝒙

]
· Pr

[
(E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp | 𝔛lp = 𝒙

]
=

∑︁
𝑇 ′∈T𝑐0

𝑀

∑︁
𝜍 ′∈[𝑞 ]vbl(𝑇′ )

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈𝑃lp

𝑇=𝑇 ′∧𝜍=𝜍 ′

∑︁
𝒙∈ΩE∧𝜎

Pr
[
𝔛lp = 𝒙

]
· 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) .

Here, the last equality follows directly from Corollary 5.14.

Note that by Lemma 4.7, fixing the witness tree 𝑇 and the witness assignment 𝜍 uniquely identifies a

node (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑃lp
satisfying 𝑇 = 𝑇 ′ ∧ 𝜍 = 𝜍 ′. We then denote this unique node as 𝑁 (𝑇 ′, 𝜎′),

and the partial assignment 𝜎 in this unique node as 𝜎(𝑇 ′, 𝜍 ′). Therefore, we further have

27



∑︁
𝑇 ′∈T𝑐0

𝑀

∑︁
𝜍 ′∈[𝑞 ]vbl(𝑇′ )

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈𝑃lp

𝑇=𝑇 ′∧𝜍=𝜍 ′

∑︁
𝒙∈ΩE∧𝜎

Pr
[
𝔛lp = 𝒙

]
· 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 )

(★) ≤
∑︁

𝑇 ′∈T𝑐0
𝑀

∑︁
𝜍 ′∈[𝑞 ]vbl(𝑇′ )

Pr
[
𝔛

lp

vbl(𝑇 ′ ) = 𝜎(𝑇 ′, 𝜍 ′)
]
· 𝑝𝑋

𝑁 (𝑇 ′ ,𝜎′ )

(▲) ≤
∑︁

𝑇 ′∈T𝑐0
𝑀

∑︁
𝜍 ′∈[𝑞 ]vbl(𝑇′ )

Pr
[
𝔛

lp

vbl(𝑇 ′ ) = 𝜎(𝑇 ′, 𝜍 ′)
]
· 𝑞−|vbl(𝑇 ′ )∩𝑉

good
| ·

(
1 − e𝑞−(1−𝜀1 )𝑘

)−|vbl(𝑇 ′ ) | 𝑝1𝛼

(■) ≤
∑︁

𝑇 ′∈T𝑐0
𝑀

∑︁
𝜍 ′∈[𝑞 ]vbl(𝑇′ )

𝑞−2 |vbl(𝑇 ′ )∩𝑉
good
| ·

(
1 − e𝑞−(1−𝜀1 )𝑘

)−2 |vbl(𝑇 ′ ) | 𝑝1𝛼

≤
∑︁

𝑇 ′∈T𝑐0
𝑀

𝑞 |vbl(𝑇 ′ ) | · 𝑞−2 |vbl(𝑇 ′ )∩𝑉
good
| ·

(
1 − e𝑞−(1−𝜀1 )𝑘

)−2 |vbl(𝑇 ′ ) | 𝑝1𝛼
(15)

(△) ≤2−𝑀 .

The (★) inequality is derived using the argument above. The (▲) inequality follows from Item IV.

of Definition 5.6. The (■) inequality follows from Lemma 4.11. Finally, the (△) inequality holds for

the chosen parameters in Condition 3.1 and was already established in the proof of Theorem 4.1; in

particular, (15) is exactly (7) and hence the same proof applies. □

5.4. Sampling and counting via linear programming. In this subsection, we apply the linear

program in Definition 5.6 to derive sampling and counting algorithms and prove Theorem 3.2. The

proofs essentially follow those in [WY24, Section 5], and we include for completeness.

We begin with the counting algorithm, which directly follows from the analysis of the linear program

presented in the previous subsection.

Proof of the counting part of Theorem 3.2. Let C = {𝑐1, 𝑐2, . . . , 𝑐𝑚}. Note that 𝑘𝑚 = 𝑛𝛼. For each

0 ≤ 𝑖 ≤ 𝑚, define C𝑖 = {𝑐1, 𝑐2, . . . , 𝑐𝑖}, Φ𝑖 = (𝑉, [𝑞], C𝑖). In particular, Φ𝑚 = Φ. By applying a

constraint-wise self-reduction, we decompose 𝑍 (Φ𝑚) into the following telescopic product:

(16) 𝑍 (Φ𝑚) = 𝑍 (Φ0) ·
𝑍 (Φ𝑚)
𝑍 (Φ0)

= 𝑍 (Φ0) ·
𝑚∏
𝑖=1

𝑍 (Φ𝑖)
𝑍 (Φ𝑖−1)

.

Note that Φ0 is a trivial CSP formula, so 𝑍Φ0 = 𝑞 |𝑉 | . Moreover, and crucially, observe that each Φ𝑖

satisfies Condition 3.1 for 0 ≤ 𝑖 ≤ 𝑚, assuming the original CSP formula Φ satisfies Condition 3.1.

Setting:

𝑀 = 1 + log 4𝑚

𝜀
,

we use the LP in Definition 5.6 with binary search to approximate each ratio
𝑍 (Φ𝑖 )

𝑍 (Φ𝑖−1 ) =
|ΩC𝑖 |
|ΩC𝑖−1 | within a

multiplicative error of
𝜀
4𝑚 . According to Proposition 5.8 and lemmas 5.9 and 5.10, this can be done in time

𝑂

( (
𝑛
𝜀

)
poly(𝑘,log 𝑞.𝛼)

)
. Therefore, we obtain an estimate of 𝑍 (Φ) = 𝑍 (Φ𝑚) within a total multiplicative

error of 𝜀 in time 𝑂

( (
𝑛
𝜀

)
poly(𝑘,log 𝑞,𝛼)

)
, as required. □

For the sampling part, we establish a constraint-wise self-reduction for sampling by constructing

a dynamic sampler. Given an atomic CSP formula Φ = (𝑉, [𝑞], C) and a constraint 𝑐 ∈ C \ {𝑐0}, it

dynamically updates a current sample 𝜎in ∼ 𝜇C\{𝑐0} to a new sample 𝜎out ∼ 𝜇C . This dynamic sampler

is derived from the random process in Definition 5.12, which was initially introduced to analyze the

linear program.

Definition 5.15 (dynamic sampler). The algorithm takes as input a CSP Φ = (𝑉, [𝑞], C), a constraint

𝑐0 ∈ C, and an error bound 𝜀 ∈ (0, 1). Additionally, the algorithm is also given access to an assignment

𝜎in ∈ [𝑞]𝑉 that satisfies Φ𝑐0 = (𝑉, [𝑞], C \ {𝑐0}).
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The algorithm proceeds as follows to update 𝜎in
to a new assignment 𝜎out ∈ [𝑞]𝑉 :

• Set the truncation threshold:

𝑀 = 1 + log 4

𝜀
.

Construct the LP on the 𝑀-truncated coupling treeT = T𝑀 (Φ, 𝑐0), as described in Definition 5.6.

• Use binary search to find an interval [𝑟−, 𝑟+] such that 𝑟− ≥ 4+𝜀
4+2𝜀 𝑟+ and the LP remains

feasible for parameters 𝑟− and 𝑟+. Let

{
𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) , 𝑝

𝑌
(E,F,𝜎,𝜏,𝑇, 𝜍 )

}
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈𝑉 (T)

be

the corresponding LP feasible solution.

• Simulate the random process from Definition 5.12 using the feasible solution obtained above,

replacing the random assignment 𝔛lp
(used as the random seed for the process) with 𝜎in

. Let

(E, F,𝝈, 𝝉,𝑻, 𝝇) ∈ L be the random leaf reached by this process.

• If the leaf node (E, F,𝝈, 𝝉,𝑻, 𝝇) ∉ Lcoup, then set 𝜎out ∈ [𝑞]𝑉 to be an arbitrary satisfying

assignment of Φ. Otherwise, update 𝜎in
by modifying the assigned variables according to 𝝉, i.e.,

set 𝜎out ← 𝝉 ∧ 𝜎in

𝑉\Λ(𝝉) .

We will prove the following lemma, which shows that the new sample produced by the dynamic

sampler approximates the target distribution 𝜇C .

Lemma 5.16. Assume Condition 3.1 and that 𝜎in ∼ 𝜇C\{𝑐0} . Then, the assignment 𝜎out produced by the
dynamic sampler in Definition 5.15 follows a distribution 𝜇out that satisfies

𝑑TV (𝜇out, 𝜇C) ≤ 𝜀.

With Lemma 5.16, we can complete the proof of Theorem 3.2.

Proof of the sampling part of Theorem 3.2. Let C = {𝑐1, 𝑐2, . . . , 𝑐𝑚}. Note that 𝑘𝑚 = 𝑛𝛼. For each

0 ≤ 𝑖 ≤ 𝑚, define C𝑖 = {𝑐1, 𝑐2, . . . , 𝑐𝑖}, Φ𝑖 = (𝑉, [𝑞], C𝑖) and let 𝜇Φ𝑖
denote the uniform distribution

over satisfying assignments of Φ𝑖 . Let 𝜎0, 𝜎1, . . . , 𝜎𝑚 ∈ [𝑞]𝑉 be constricted as follows:

• Sample 𝜎0 ∼ P, the uniform product distribution.

• For each 1 ≤ 𝑖 ≤ 𝑚, use the dynamic sampler from Definition 5.15 to generate 𝜎𝑖 from 𝜎𝑖−1,

with the input formula Φ𝑖 = (𝑉, [𝑞], C𝑖), input constraint 𝑐𝑖 , error bound
𝜀
𝑚

, and current sample

𝜎𝑖−1. If 𝜎𝑖 is not a solution to Φ𝑖 at any step 0 ≤ 𝑖 ≤ 𝑚, output an arbitrary final assignment

instead.

By applying induction along with Lemma 5.16, we can verify that for each 0 ≤ 𝑖 ≤ 𝑚, the distribution

𝜇𝑖 of 𝜎𝑖 satisfies

𝑑TV (𝜇𝑖 , 𝜇C𝑖 ) ≤
𝑖

𝑚
· 𝜀.

The total running time is bounded by 𝑂

( (
𝑛
𝜀

)
poly(𝑘,log 𝑞.𝛼)

)
according to Proposition 5.8, which accounts

for the overhead of building and solving the linear program. Thus, the theorem is proved. □

We then finish this section by proving Lemma 5.16.

Proof of Lemma 5.16. According to Definition 5.15 and Lemma 5.13, for each 𝒚 ∈ ΩC , we have

Pr
[
𝜎out = 𝒚

]
=

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

with F ∧ 𝜏 satisfied by 𝒚

𝜇C\{𝑐0} (E ∧ 𝜎) · 𝑝𝑋(E,F,𝜎,𝜏,𝑇, 𝜍 ) ·
1

|ΩE∧𝜎 |

(by Item III.a of Definition 5.6) ≥𝑟− ·
∑︁

(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

with F ∧ 𝜏 satisfied by 𝒚

𝜇C\{𝑐0} (E ∧ 𝜎) · 𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) ·
1

|ΩE∧𝜎 |

=𝑟− ·
1

|ΩC\{𝑐0} |
·

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

with F ∧ 𝜏 satisfied by 𝒚

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) .
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Here, the first equality holds because E𝜎 = F 𝜏
for each (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ Lcoup, meaning each

solution in ΩF∧𝜏 is generated with equal probability
1

|ΩF∧𝜏 | =
1

|ΩE∧𝜎 | as established in Lemma 5.13. The

last equality follows from the identity 𝜇C\{𝑐0} (E ∧ 𝜎) = |ΩE∧𝜎 |
|ΩC\{𝑐0} | , because E ∧ 𝜎 =⇒ C \ {𝑐0} for

each (E, F , 𝜎, 𝜏, 𝑇, 𝜍) ∈ 𝑉 (T ), which holds by induction.

Therefore, we can construct a distribution 𝜈 over [𝑞]𝑉 such that the measure of each 𝒚 ∈ ΩC is

𝜈(𝒚) = 1

|ΩC |
·

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

with F ∧ 𝜏 satisfied by 𝒚

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) ,(17)

and meanwhile the total variation distance between 𝜈 and the distribution 𝜇out
of 𝜎out

is bounded as:

𝑑TV
(
𝜈, 𝜇out

)
≤

���� 1

|ΩC |
− 𝑟− ·

1

|ΩC\{𝑐0} |

���� ∑︁
𝒚∈ΩC

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

with F ∧ 𝜏 satisfied by 𝒚

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) .(18)

Given that

(
1 − 𝜀

4

)
𝑟− · |Ω

C\{𝑐0} |
|ΩC | ≤

(
1 + 𝜀

4

)
𝑟+ and 𝑟− ≥ 4+𝜀

4+2𝜀 𝑟+ are ensured by the process, we obtain

(19)

(
1 − 𝜀

2

)
· |Ω

C\{𝑐0} |
|ΩC |

≤ 𝑟− ≤
(
1 + 𝜀

2

)
· |Ω

C\{𝑐0} |
|ΩC |

.

Combining (18) and (19), we have

(20) 𝑑TV (𝜈, 𝜇out) ≤ 𝜀

2
· 1

|ΩC |
∑︁
𝒚∈ΩC

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

with F ∧ 𝜏 satisfied by 𝒚

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 ) ≤
𝜀

2
.

Now, consider the total variation distance between 𝜈 and 𝜇C , the uniform distribution over ΩC . By

(17) and (11), for each 𝒚 ∈ ΩC we have 𝜈(𝒚) ≤ 1
|ΩC | = 𝜇C (𝒚). Thus, we have

𝑑TV (𝜇C , 𝜈) =
∑︁
𝒚∈ΩC

(𝜇C (𝒚 − 𝜈(𝒚))

=
∑︁
𝒚∈ΩC

©­­­­«
1

|ΩC |
− 1

|ΩC |
·

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

with F ∧ 𝜏 satisfied by 𝒚

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 )

ª®®®®¬
(by (11)) =

1

|ΩC |
∑︁
𝒚∈ΩC

∑︁
(E,F,𝜎,𝜏,𝑇, 𝜍 ) ∈Lcoup

with F ∧ 𝜏 satisfied by 𝒚

𝑝𝑌(E,F,𝜎,𝜏,𝑇, 𝜍 )

(by Claim 5.11) ≤ 𝜀
2
.

Combining with (20) and by triangle inequality, we conclude

𝑑TV (𝜇C , 𝜇out) ≤ 𝑑TV (𝜇C , 𝜈) + 𝑑TV (𝜈, 𝜇out) = 𝜀. □
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[MM06] Marc Mézard and Andrea Montanari. Reconstruction on trees and spin glass transition. J.
Stat. Phys., 124(6):1317–1350, 2006.
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Appendix A. Proofs of structural properties

In this section, we prove Lemma 3.13.

The first condition of nice hypergraphs, i.e., 𝐻Φ is in H≤𝑘 and has density 𝛼, is trivial. Then

Property 3.4 follows from a classical result [RS98, Theorem 1].

Lemma A.1. With probability 1 − 𝑜(1/𝑛) over the random formula Φ = Φ(𝑘, 𝑛, 𝑚) with density 𝛼, 𝐻Φ

satisfies Property 3.4, namely, the maximum degree of variables is at most 4𝑘𝛼 + 6 log 𝑛.

Similar to this lemma, the following proposition, which bounds the number of high-degree vertices

in 𝐻Φ, also follows from the classical result of the balls-and-bins model.

Proposition A.2. Assume 𝑘 ≥ 2, 𝑞 ≥ 2 and 𝛼 ≤ 𝑞𝑘 are constants. Let 𝑝1 be a parameter satisfying
𝑝1 ≥ 4𝑘 . Then with probability 1 − 𝑜(1/𝑛) over the random formula Φ, for 𝐻Φ = (𝑉, E), we have

|{𝑣 ∈ 𝑉 | deg(𝑣) > 𝑝1𝛼}| ≤ e−𝑘𝛼−2𝑛 ,

i.e., |HD(𝑉) | ≤ e−𝑘𝛼−2𝑛.

Proof. The degrees of the variables in Φ distribute as a balls-and-bins experiment with 𝑘𝑚 balls and

𝑛 bins. Let 𝐷1, . . . , 𝐷𝑛 ∼ Pois(𝑘𝛼) be 𝑛 independent Poisson random variables with parameter 𝑘𝛼.

Then the degrees of the variables in Φ has the same distribution as {𝐷1, . . . , 𝐷𝑛} conditioned on the

event E𝑛,𝑚 that

∑𝑛
𝑖=1 𝐷𝑖 = 𝑘𝑚 [MU17, Chapter 5.4]. Note that

∑𝑛
𝑖=1 𝐷𝑖 is a Poisson random variable

with parameter 𝑘𝛼𝑛 = 𝑘𝑚. Thus

Pr
[
E𝑛,𝑚

]
= e−𝑘𝑚 · (𝑘𝑚)

𝑘𝑚

(𝑘𝑚)! ≥
1

√
2𝜋𝑘𝑚

=
1

√
2𝜋𝑘𝛼𝑛

.

For any fixed 𝑖 ∈ [𝑛], we have

Pr [𝐷𝑖 ≥ 𝑝1𝛼] = Pr [Pois(𝑘𝛼) ≥ 𝑝1𝛼] ≤
e−𝑘𝛼 (e𝑘𝛼) 𝑝1𝛼
(𝑝1𝛼) 𝑝1𝛼

≤ e−𝑘𝛼 (e/4)4𝑘𝛼 ≤ e−𝑘𝛼2−2𝑘𝛼 ≤ 2−3𝑘𝛼 .

Define 𝑈 = {𝑖 ∈ [𝑛] | 𝐷𝑖 ≥ 𝑝1𝛼}. Then by Chernoff-Hoeffding bound, we obtain that

Pr
[
|𝑈 | > e−𝑘𝛼−2𝑛

]
≤ Pr

[
|𝑈 | − E[|𝑈 |] > e−𝑘+1𝛼−2𝑛

]
< e−2e

−2𝑘+2𝛼−4𝑛 = 𝑜(1/𝑛2) ,
which further gives that

Pr
[
|{𝑣 ∈ 𝑉 (𝐻Φ) | deg(𝑣) > 𝑝1𝛼}| ≥ e−𝑘𝛼−2𝑛

]
= Pr

[
|𝑈 | ≥ e−𝑘𝛼−2𝑛 | E𝑛,𝑚

]
≤
√
2𝜋𝑘𝛼𝑛 · 𝑜(1/𝑛2) = 𝑜(1/𝑛) . □
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Now we show that 𝐻Φ satisfies Property 3.5 and Property 3.6 with probability 1 − 𝑜(1/𝑛). For

Property 3.5, we present Lemma A.3 and its corollary, which are adapted from [HWY23, Proposition

3.3 & 3.4]. For Property 3.6, we have Lemma A.6, which is adapted from [GGGY21, Lemma 8.6] and

[HWY23, Proposition 3.5], but gives a better bound.

Lemma A.3. For any fixed 𝑘 and 𝛼, if 𝜂𝑘 ≥ 4, 𝜌 < 1 and e(𝜌𝑘𝛼)𝜂 ≤ 1, then with probability 1− 𝑜(1/𝑛)
over the choice of random 𝑘-SAT formula Φ = Φ(𝑘, 𝑛, 𝑚) with density 𝛼, 𝐻Φ satisfies Property 3.5.

Proof. Let ℓ ≤ 𝜌𝑚 and fix 𝑟 = ⌊(1 − 𝜂)𝑘ℓ⌋. For any 𝑈 ⊆ 𝑉 of size 𝑟 and any ℓ edges 𝑒1, . . . , 𝑒ℓ , the

probability that 𝑒𝑖 ⊆ 𝑈 for every 𝑖 is (
𝑟

𝑛

) 𝑘ℓ
≤

(
(1 − 𝜂)𝑘ℓ

𝑛

) 𝑘ℓ
.

Thus, let Eℓ be the event that there exists 𝑈 ⊆ 𝑉 of size 𝑟 and ℓ edges 𝑒1, . . . , 𝑒ℓ such that 𝑒𝑖 ⊆ 𝑈 for

every 𝑖. We obtain that

Pr [Eℓ] ≤
(
𝑛

𝑟

) (
𝑚

ℓ

) (
(1 − 𝜂)𝑘ℓ

𝑛

) 𝑘ℓ
≤

(
e𝑛

𝑟

)𝑟 (
e𝑚

ℓ

)ℓ ( (1 − 𝜂)𝑘ℓ
𝑛

) 𝑘ℓ
≤

(
e𝑛

(1 − 𝜂)𝑘ℓ

) (1−𝜂)𝑘ℓ (
e𝑚

ℓ

)ℓ ( (1 − 𝜂)𝑘ℓ
𝑛

) 𝑘ℓ
(assuming 𝑛 ≥ 4𝑟)

≤
(
e(1−𝜂)𝑘+1((1 − 𝜂)𝑘ℓ)𝜂𝑘𝑚

𝑛𝜂𝑘ℓ

)ℓ
≤

(
e𝑘𝑘 𝜂𝑘𝛼𝑛ℓ𝜂𝑘

𝑛𝜂𝑘ℓ

)ℓ
≤

(
(e𝑘 𝜂)𝑘𝛼

( ℓ
𝑛

) 𝜂𝑘−1)ℓ
.

If ℓ ≤ 𝑛1/3, we have

Pr [Eℓ] ≤ (e𝑘 𝜂)𝑘𝛼𝑛−2(𝜂𝑘−1)/3 ≤ (e𝑘 𝜂)𝑘𝛼𝑛−2

as long as 𝜂𝑘 ≥ 4. If 𝑛1/3 ≤ ℓ ≤ 𝜌𝑚, noting that (𝜌𝛼)𝜂𝑘−1 ≤ 1/(e𝑘𝑘 𝜂𝑘𝜌𝛼), we have

Pr [Eℓ] ≤
(
(e𝑘 𝜂)𝑘𝛼

(
𝜌𝛼

) 𝜂𝑘−1)𝑛1/3 ≤ 𝜌𝑛
1/3 ≤ 𝑛−3 .

Therefore, by the union bound, the probability that there exists ℓ ≤ 𝜌𝑚 edges 𝑒1, . . . , 𝑒ℓ where����� ℓ⋃
𝑖=1

𝑒𝑖

����� ≤ (1 − 𝜂)𝑘ℓ
is at most

𝜌𝑚∑︁
ℓ=1

Pr [Eℓ] ≤
(e𝑘 𝜂)𝑘𝛼𝑛1/3

𝑛2
+ 𝑛−2 = 𝑜(1/𝑛) . □

Corollary A.4. Let 𝐻 = (𝑉, E) ∈ H≤𝑘 be a hypergraph satisfying (𝜂, 𝜌)-edge expansion. Then for any
𝜂 < 𝑏 ≤ 1 and 𝑉 ′ ⊆ 𝑉 of size less than (𝑏 − 𝜂)𝑘𝜌 |E |, it holds that

|𝑉 ′ | ≥ (𝑏 − 𝜂)𝑘 |{𝑒 ∈ E | |𝑒 ∩𝑉 ′ | ≥ 𝑏𝑘}| ,
namely, the number of hyperedges 𝑒 such that |𝑒 ∩𝑉 ′ | ≥ 𝑏𝑘 is at most ⌊|𝑉 ′ | /((𝑏 − 𝜂)𝑘)⌋.

Proof. For the sake of contradiction, assume that there is a set 𝑉 ′ ⊆ 𝑉 of size |𝑉 ′ | < (𝑏 − 𝜂)𝑘𝜌𝑚 and

ℓ = ⌊|𝑉 ′ | /((𝑏 − 𝜂)𝑘)⌋ + 1 hyperedges 𝑒1, . . . , 𝑒ℓ such that each hyperedge contains at least 𝑏𝑘 vertices

in 𝑉 ′. Then it is clear that |𝑉 ′ | < (𝑏 − 𝜂)𝑘ℓ and thus����� ℓ⋃
𝑖=1

𝑒𝑖

����� ≤ (1 − 𝑏)𝑘ℓ + |𝑉 ′ | < (1 − 𝜂)𝑘ℓ .

Since ℓ ≤ 𝜌𝑚, it contradicts with Lemma A.3. □
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Proposition A.5 ([GGGY21, Lemma 8.5]). Let 𝑈 be any subset of indices of clauses in Φ and 𝑇 be any
tree on the vertex set 𝑈. Then the probability that 𝑇 is a subgraph of 𝐺Φ is at most (𝑘2/𝑛) |𝑈 |−1.

Lemma A.6. Suppose 𝛼 ≤ 2𝑘 . With probability 1 − 𝑜(1/𝑛) over the choice of random 𝑘-SAT formula
Φ = Φ(𝑘, 𝑛, 𝑚) with fixed density 𝛼, 𝐻Φ satisfies Property 3.6, namely, for every clause 𝑐 in Φ and ℓ ≥ 1,
there are at most 𝑛3(e𝑘2𝛼)ℓ many connected sets of clauses in 𝐺Φ that contains 𝑐 and has size ℓ.

Proof. If ℓ = 1, this lemma is trivial. Now we assume ℓ ≥ 2. Let 𝑐 be an arbitrary clause in Φ and 𝑈

be a set of clauses of size ℓ where 𝑐 ∈ 𝑈. Let 𝑇𝑈 be the set of all trees with vertex set 𝑈. By standard

results, we have |𝑇𝑈 | = ℓℓ−2. In addition, any fixed tree 𝑇 ∈ 𝑇𝑈 is a subgraph of 𝐺Φ with probability at

most (𝑘2/𝑛)ℓ−1, by Proposition A.5. Thus, the union bound gives that

Pr [𝐺Φ [𝑈] is connected] ≤ ℓℓ−2(𝑘2/𝑛)ℓ−1.
Let 𝑍ℓ,𝑐 be the number of connected sets of clauses with size ℓ containing 𝑐. Then, we have

E[𝑍ℓ,𝑐] =
∑︁

𝑈:𝑐∈𝑈, |𝑈 |=ℓ
Pr [𝐺Φ [𝑈] is connected]

≤
(
𝑚 − 1
ℓ − 1

)
· ℓℓ−2 ·

(
𝑘2

𝑛

)ℓ−1
≤ (e𝑚)

ℓ−1

(ℓ − 1)ℓ−1
ℓℓ−2

(
𝑘2

𝑛

)ℓ−1
=
(e𝑘2𝛼)ℓ−1

ℓ

( ℓ

ℓ − 1

)ℓ−1
≤ e

ℓ
· (e𝑘2𝛼)ℓ−1 .

By Markov’s inequality, it further implies that

Pr
[
𝑍ℓ,𝑐 ≥ 𝑛3(e𝑘2𝛼)ℓ

]
≤ e(e𝑘2𝛼)ℓ−1

ℓ𝑛3(e𝑘2𝛼)ℓ
=

1

𝑛3𝑘2𝛼ℓ
.

Finally, using a union bound again, we obtain that

Pr
[
∃ 2 ≤ ℓ ≤ 𝑚 and clause 𝑐 such that 𝑍ℓ,𝑐 ≥ 𝑛3(e𝑘2𝛼)ℓ

]
≤

𝑚∑︁
ℓ=2

𝑚

𝑛3𝑘2𝛼ℓ
=

1

𝑘2𝑛2

𝑚∑︁
ℓ=2

1

ℓ
≤ log𝑚

𝑘2𝑛2
= 𝑜(1/𝑛) . □

Next, we show that 𝐻Φ satisfies Property 3.10 and Property 3.11 with probability 1 − 𝑜(1/𝑛) in

Lemma A.12 and Lemma A.14. To prove these two lemmas, we also need the following properties for

random formulas and for Algorithm 1.

In a hypergraph 𝐻 = (𝑉, E), let Γ𝐻 (𝑉 ′) denote the set of neighbors of vertices in 𝑉 ′, and let

Γ+
𝐻
(𝑉 ′) = 𝑉 ′ ∪ Γ𝐻 (𝑉 ′). Then we have the following technical propositions.

Proposition A.7 ([HWY23, Proposition 3.6]). LetΦ = (𝑘, 𝑛, 𝑚) be a random 𝑘-SAT formula with 𝑘 ≥ 30
and density 𝛼. Then with probability 1 − 𝑜(1/𝑛), we have��Γ+𝐻Φ

(𝑉 ′)
�� ≤ 3𝑘4𝛼max{|𝑉 ′ | , 𝑘 log 𝑛}

for every connected subset 𝑉 ′ of vertices in 𝐻Φ.

Proof. Define E′ = {𝑒 ∈ E | vbl(𝑒) ∩𝑉 ′ ≠ ∅}. It suffices to bound |E′ | ≤ 3𝑘3𝛼max{|𝑉 ′ |, 𝑘 log 𝑛} since

|Γ+
𝐻Φ
(𝑉 ′) | ≤ 𝑘 |E′ |.

We turn our focus to the case when |𝑉 ′ | ≥ ⌊𝑘 log 𝑛⌋. Since 𝐻Φ(𝑉 ′) is connected, there exists a

E′′ ⊂ E′ such that 𝑉 ′ is connected using hyperedges in E′′ and |𝑉 ′ |/𝑘 ≤ E′′ ≤ |𝑉 ′ |. We get that

|E′′ | ≥ log 𝑛 − 1 .
Now, define Ẽ = E′ \ E′′. Since 𝑘3𝛼 ≥ 1, we will focus on bounding |E′ | ≤ 2𝑘3𝛼 |𝑉 ′ | + |𝑉 ′ |. Using

the fact that |E′ | ≤ |Ẽ | + |E′′ | and |E′′ | ≤ |𝑉 ′ |, we focus our attention on bounding |Ẽ | ≤ 2𝑘3𝛼 |𝑉 ′ |.
Consider any fixed E′′, 𝑉 ′, Ẽ which satisfy:
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• |E′′ | ≥ log 𝑛 − 1, |𝑉 ′ | ≥ |E′′ |, |Ẽ | ≥ 2𝑘3𝛼 |𝑉 ′ |, and Ẽ ∩ E′′ = ∅;
• Further, 𝐺Φ(E′′) is connected, 𝑉 ′ ⊂ ⋃

𝑒∈E′′ vbl(E′′) and vbl(𝑒) ∩𝑉 ′ ≠ ∅ for all 𝑒 ∈ E′′.
Define 𝑟1 = |E′′ |, 𝑟2 = |𝑉 ′ |, and 𝑟3 = |Ẽ |. Based on these observations, we define the events:

• A(E′′, 𝑉 ′, Ẽ) to be the event when the above conditions are satisfied with (E′′, 𝑉 ′, Ẽ);
• A(E′′) to be event that 𝐺Φ [E′′] is connected;

• A(𝑉 ′, Ẽ) to be the event that vbl(𝑒) ∩𝑉 ′ ≠ ∅ holds for all 𝑒 ∈ Ẽ.

Now, using Proposition A.5, we get that

Pr [A(E′′]) ≤ 𝑟
𝑟1−2
1 ·

(
𝑘2

𝑛

)𝑟1−1
.

Observe that since E′′ ∩ Ẽ = ∅, A(E′′) and A(𝑉 ′, Ẽ) are independent. Then,

Pr
[
A(𝑉 ′, Ẽ) |A(E′′)

]
= Pr

[
A(𝑉 ′, Ẽ)

]
≤

(
𝑘 · 𝑟2

𝑛

)𝑟3
.

Therefore,

Pr
[
A(E′′, 𝑉 ′, Ẽ)

]
≤ Pr

[
A(𝑉 ′, Ẽ)

]
· Pr [A(E′′]) ≤ 𝑟

𝑟1−2
1 ·

(
𝑘2

𝑛

)𝑟1−1 (
𝑘 · 𝑟2

𝑛

)𝑟3
.

We now use union bound over all possible (valid) sizes of E′′, 𝑉 ′, Ẽ to upper bound the probability that

under the conditions mentioned above, 𝑟3 ≥ 2𝑘3𝛼𝑟2. We will show this is upper bounded by 𝑜(1/𝑛),
which then implies our result. By the union bound,

Pr
[
∃ such A(E′′, 𝑉 ′, Ẽ)

]
≤

∑︁
𝑟1≥log 𝑛−1

∑︁
𝑟2≥𝑟1

∑︁
𝑟3≥2𝑘3𝛼𝑟2

(
𝑚

𝑟1

) (
𝑘𝑟1

𝑟2

) (
𝑚

𝑟3

)
𝑟
𝑟1−2
1 ·

(
𝑘2

𝑛

)𝑟1−1 (
𝑘 · 𝑟2

𝑛

)𝑟3
.

To simplify the above expression, we make following assumptions:
e𝑘2𝛼

(2𝑘2/e)𝑘3𝛼
≤ 1

8 and
e𝑘

(2𝑘2/e)𝑘3𝛼
≤ 1

8 .

These assumptions are satisfied under 𝑘3𝛼 ≥ 1 and 𝑘 ≥ 30. Then, we get that

Pr
[
∃ such A(E′′, 𝑉 ′, Ẽ)

]
≤ 4𝑛

𝑛2(log 𝑛 − 1)2 = 𝑜(1/𝑛) .

For the case when |𝑉 ′ | < ⌊𝑘 log 𝑛⌋, we can consider another connected set of vertices 𝑉 ′′ ⊃ 𝑉 ′ such

that |𝑉 ′′ | = ⌊𝑘 log 𝑛⌋. Applying the previous argument on 𝑉 ′′, the claim follows. □

Using Proposition A.7, We can also bound the fraction of high-degree variables in any connected set.

Proposition A.8. Assume 𝑘 ≥ 2, 𝑞 ≥ 2, and 𝛼 ≤ 𝑞𝑘 are constants. Let 𝑝1 be a parameter satisfying
6𝑘5 ≤ 𝑝1 ≤ e𝑘−2𝛼. Then with probability 1 − 𝑜(1/𝑛) over the random formula Φ, the following holds for
𝐻Φ = (𝑉, E): Let 𝑉 ′ ⊆ 𝑉 be connected in 𝐻Φ and |𝑉 ′ | ≥ log 𝑛. Then

|{𝑣 ∈ 𝑉 ′ | deg(𝑣) ≥ 𝑝1𝛼}| ≤ 6𝑘5 |𝑉 ′ | /𝑝1 .

Proof. We prove this proposition by showing that if HD(𝑉 ′) is too large then𝑉 ′ has too many neighbors,

which contradicts to Proposition A.7.

We consider the number of edges that contain high-degree vertices in 𝑉 ′. Let

E′ = {𝑒 ∈ E | 𝑒 ∩HD(𝑉 ′) ≠ ∅} , and 𝑈 =
⋃
𝑒∈E′

𝑒 .

By setting 𝜂 = 1/2 and 𝜌 = e−2/(𝑘𝛼) in Lemma A.3, we obtain that any ℓ ≤ 𝜌𝑚 edges contain at least

𝑘ℓ/2 distinct vertices with probability 1 − 𝑜(1/𝑛). Thus, it gives that |𝑈 | ≥ 𝑘min{|E′ | , 𝜌𝑚}/2. Note

that 𝑈 = Γ+
𝐻Φ
(HD(𝑉 ′)) ⊆ Γ+

𝐻Φ
(𝑉 ′). So we have

���Γ+𝐻Φ
(𝑉 ′)

��� ≥ 𝑘min{|E′ | , 𝜌𝑚}/2.

Now we bound the size of E′. By a double counting on the size of {(𝑣, 𝑒) ∈ HD(𝑉 ′) × E′ | 𝑣 ∈ 𝑒},
we have 𝑘 |E′ | ≥ 𝑝1𝛼 |HD(𝑉 ′) |, and thus

(21) |HD(𝑉 ′) | ≤ 𝑘

𝑝1𝛼
|E′ | .
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If |E′ | ≤ 𝜌𝑚, then by Proposition A.7, it follows that

𝑘 |E′ |
2
≤

��Γ+𝐻Φ
(𝑉 ′)

�� ≤ 3𝑘4𝛼max{|𝑉 ′ | , 𝑘 log 𝑛} ≤ 3𝑘5𝛼 |𝑉 ′ | .

Combining with (21), it yields that |E′ | ≤ 6𝑘4𝛼 |𝑉 ′ |, and thus

|HD(𝑉 ′) | ≤ 6𝑘5

𝑝1
|𝑉 ′ | .

If |E′ | > 𝜌𝑚, using Proposition A.7 again, we obtain

𝑘𝜌𝑚

2
≤

��Γ+𝐻Φ
(𝑉 ′)

�� ≤ 3𝑘4𝛼max{|𝑉 ′ | , 𝑘 log 𝑛} ≤ 3𝑘5𝛼 |𝑉 ′ | ,

which gives

|𝑉 ′ | ≥ 𝑘𝜌𝑚

6𝑘5𝛼
=

𝑛

6e2𝑘5𝛼
.

On the other hand, it is clear that |HD(𝑉 ′) | ≤ |HD(𝑉) | ≤ e−𝑘𝛼−2𝑛 by Proposition A.2. So we obtain

that

|HD(𝑉 ′) | ≤ 6e2𝑘5𝛼

e𝑘𝛼2
|𝑉 ′ | ≤ 6𝑘5

𝑝1
|𝑉 ′ | . □

The following result is adapted from [COF14, Lemma 2.4] and [HWY23, Lemma A.2], but uses tighter

parameters.

Proposition A.9. Assume 𝑘 ≥ 12, 𝑞 ≥ 2 and 𝛼 ≤ 𝑞𝑘 are constants. Then with probability 1 − 𝑜(1/𝑛)
over the random formula Φ, the following holds for 𝐻Φ = (𝑉, E): Fix an arbitrary E′ ⊆ E of size
|E′ | ≤ 4−𝑘𝛼−1/2𝑛. Let 𝑒𝑖1 , . . . , 𝑒𝑖ℓ ∈ E \ E′ be hyperedges of distinct indices. For each 𝑠 ∈ [ℓ], define
𝑉𝑠 = (

⋃
𝑒∈E′ 𝑒) ∪ (

⋃𝑠−1
𝑗=1 𝑒𝑖 𝑗 ). If |𝑒𝑖𝑠 ∩𝑉𝑠 | ≥ 6 holds for all 𝑠 ∈ [ℓ], then ℓ ≤ |E′ |.

Proof. We prove the statement by contradiction. Hence, assume that E′ and 𝑒𝑖1 , ..., 𝑒𝑖ℓ violate the

statement for ℓ > |E′ |. We can discard additional clauses from E′ and in fact, assume that ℓ = |E′ | + 1
for which the statement is violated. Further, observe that we can assume that |E′ | ≤ 𝑚 − ℓ. Define

𝜀 > 0 such that ℓ = ⌊𝜀𝑛⌋ + 1. Since |E′ | ≥ 1, we have that 𝜀 ≥ 1
𝑛

. From the bound on |E′ |, we get that

𝜀 ≤ 4−𝑘𝛼−1/2 + 1
𝑛

.

Define 𝑌 :=
⋃ 𝑗=ℓ

𝑗=1 vbl(𝑒𝑖 𝑗 ) \
⋃

𝑒∈E′ vbl(𝑒). Then, the following are true:

• |𝑌 | = ∑𝑟=ℓ
𝑟=1 |vbl(𝑒𝑖𝑟 ) | − |vbl(𝑒𝑖𝑟 ) ∩𝑉𝑟 | ≤ (𝑘 − 6)ℓ;

• There is a Ẽ ⊂ E \ E′ such that |Ẽ | = ℓ and vbl(𝑒) ⊆ 𝑌 ∪⋃
𝑒∈E′ vbl(𝑒) for all 𝑒 ∈ Ẽ. For this,

we can just take Ẽ = {𝑒𝑖1 , ..., 𝑒𝑖ℓ }.
Now, consider fixed E′, 𝑌 , Ẽ such that |𝑌 | = 𝑡 ≤ (𝑘 − 6)ℓ, |Ẽ | = ℓ and |E′ | = min{𝑚 − ℓ, ℓ − 1}. Define

A(E′, 𝑌 , Ẽ) to be the event that vbl(Ẽ) ⊂ 𝑌 ∪ vbl(E′). We have that

Pr
[
A(E′, 𝑌 , Ẽ)

]
≤

(
𝑘 |E′ | + |𝑌 |

𝑛

) 𝑘 Ẽ
≤

(
𝑘 (ℓ − 1) + (𝑘 − 6)ℓ

𝑛

) 𝑘ℓ
≤ (4𝑘𝜀)𝑘ℓ .

The last inequality follows from the fact that ℓ ≤ 𝜀𝑛 + 1 ≤ 2𝜀𝑛. Now, by union bound over all choices

of (E′, 𝑌 , Ẽ), we get that

Pr
[
∃ such an (E′, 𝑌 , Ẽ)

]
≤

𝑡=𝑘−6∑︁
𝑡=1

(
𝑚

ℓ − 1

)
·
(
𝑚

ℓ

)
·
(
𝑛

𝑡

)
(4𝑘𝜀)𝑘ℓ .

We can upper bound both

(𝑚
ℓ

)
and

( 𝑚
ℓ−1

)
by ( e𝑚

ℓ−1 )
ℓ
. Further, (𝑘 − 6)ℓ ≤ (𝑘 − 6) (𝜀𝑛 + 1) ≤ 2𝑘𝜀𝑛 ≤ 𝑛/2

if we assume 𝜀 ≤ 1/(4𝑘). But we have that 𝜀 ≤ 4−𝑘𝛼−1/2 + 1
𝑛

and we can use that 𝑘 ≥ 12. Then,
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(𝑛
𝑡

)
≤

(
e𝑛

(𝑘−6)ℓ

) (𝑘−6)ℓ
. Now,

Pr
[
∃ such an (E′, 𝑌 , Ẽ)

]
≤ 𝑛 ·

( e𝛼𝑛
ℓ − 1

)2ℓ
·
(

e𝑛

(𝑘 − 6)ℓ

) (𝑘−6)ℓ
· (4𝑘𝜀ℓ)𝑘ℓ

≤ 𝑛 ·
(
e𝑘−4 · 𝛼2 · 22𝑘 · 𝑛𝑘−4 · 𝜀𝑘 · 𝑘 𝑘
ℓ𝑘−6 · (ℓ − 1)2(𝑘 − 6)𝑘−6

)ℓ
.

Now, to further evaluate the R.H.S., we use the fact that
𝑘𝑘

(𝑘−6)𝑘−6 ≤ (e𝑘)
6
. Also, ℓ ≤ 𝜀𝑛 and ℓ−1 ≥ 𝜀𝑛/2.

Then, we get that

Pr
[
∃ such an (E′, 𝑌 , Ẽ)

]
≤ 𝑛 ·

(
e𝑘+222𝑘 · 𝛼2 · 𝜀4 · 𝑘6

)ℓ
:= 𝑝.

Observe that since 𝜀 ≤ 4−𝑘𝛼−1/2 + 1
𝑛

, we get that e𝑘+222𝑘 · 𝛼2 · 𝜀4 · 𝑘6 ≤ 1
2 since 𝑘 ≥ 12. Now, based

on whether 𝜀𝑛 ≥ 5 log 𝑛 or 𝜀𝑛 < 5 log 𝑛, we make two cases:

• If 𝜀𝑛 ≥ 5 log 𝑛, we get that 𝑝 ≤ 𝑛 · ( 12 )
𝜀𝑛 = 𝑜(1/𝑛3);

• If 𝜀𝑛 < 5 log 𝑛, we assume 𝑛 ≥ 2Ω(𝑘 ) (for an appropriately large constant), which implies

that e𝑘+222𝑘 · 𝛼2 · 𝜀4 · 𝑘6 = 𝑜(1/𝑛3) and we also have that ℓ ≥ 2, which again implies that

𝑝 = 𝑜(1/𝑛3).
Observe that we have shown the above probability bound for E′ of a specific size, which, in our case was

min{ℓ−1, 𝑚−ℓ}. Then, by union bound over all possible sizes of E′, we get that Pr
[
∃ no (E′, 𝑌 , Ẽ)

]
≥

1 − 𝑜(1/𝑛). □

Using Proposition A.9, we can bound the size of bad vertices and bad hyperedges in any connected

sets. Given a hypergraph 𝐻 = (𝑉, E), we now simplify 𝑉bad(𝑉) to 𝑉bad and Ebad(𝑉) to Ebad. We first

present the following facts.

Fact A.10. For any 𝑉 ′ ⊆ 𝑉 , it holds that 𝑉bad(𝑉 ′) ⊆ 𝑉bad and Ebad(𝑉 ′) ⊆ Ebad.

Fact A.11 ([GGGY21, Lemma 8.9]). For any 𝑉 ′ ⊆ 𝑉bad such that 𝑉 ′ is a connected component in the
induced subgraph 𝐻 [𝑉bad], it holds that 𝑉bad(𝑉 ′) = 𝑉 ′.

If Proposition A.9 holds for 𝐻Φ, we can prove that Property 3.10 is also satisfied, which states that

the number of bad variables is bounded by the number of high-degree variables.

Lemma A.12. For any fixed 𝑘 and 𝛼, if 𝜂𝑘 ≥ 4, e(𝜌𝑘𝛼)𝜂 ≤ 1, 𝜀1 > 𝜂, and 6𝑘5 ≤ 𝑝1 ≤ e𝑘−2𝛼, then
with probability 1 − 𝑜(1/𝑛) over the choice of random formula Φ, it holds for 𝐻Φ = (𝑉, E) that:

(1) for any𝑉 ′ ⊆ 𝑉 , we have |𝑉bad(𝑉 ′) | ≤ 2 |HD(𝑉 ′) | /(𝜀1−𝜂), in particular, 𝐻Φ satisfies Property 3.10
if 𝜀1 = 2𝜂;

(2) for any 𝑉 ′ ⊆ 𝑉bad such that 𝑉 ′ consists of some connected components in 𝐻Φ [𝑉bad], we have
|𝑉 ′ | ≤ 2 |HD(𝑉 ′) | /(𝜀1 − 𝜂).

Proof. We only need to prove item (1). Item (2) is a direct corollary of item (1) and Fact A.11.

By Proposition A.2, we have |HD(𝑉 ′) | ≤ |HD(𝑉) | ≤ e−𝑘𝛼−2𝑛. Let

E′ = {𝑒 ∈ E | |𝑒 ∩HD(𝑉 ′) | ≥ 𝜀1𝑘}.
By setting 𝑏 = 𝜀1 in Lemma A.3 and Corollary A.4, it follows that

|HD(𝑉 ′) | ≥ (𝜀1 − 𝜂)𝑘 |E′ | .
In particular, |E′ | ≤ |HD(𝑉 ′) | ≤ e−𝑘𝛼−2𝑛. Observe that, in Algorithm 1, if there exist more than one

hyperedge that can be added into Ebad(𝑉 ′), we can add them in an arbitrary order without changing

the output of Algorithm 1. So we start by adding all hyperedges in E′ into Ebad(𝑉 ′) first. After that,

each hyperedge newly added to Ebad(𝑉 ′) intersects at least 𝜀1𝑘 vertices with existing hyperedge in

Ebad(𝑉 ′). Hence, applying Proposition A.9, we obtain that |Ebad(𝑉 ′) \ E′ | ≤ |E′ |, which implies that

|Ebad(𝑉 ′) | ≤ 2 |E′ | ≤ 2

(𝜀1 − 𝜂)𝑘
|HD(𝑉 ′) |
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and thus

|𝑉bad(𝑉 ′) | ≤ 𝑘 |Ebad(𝑉 ′) | ≤
2

𝜀1 − 𝜂
|HD(𝑉 ′) | . □

Now we can prove Property 3.11. The following two results are adapted from [HWY23, Lemma 4.4 &

Corollary 4.2] using our parameters.

Proposition A.13. For any fixed 𝑘 and 𝛼, assume 𝜂, 𝜌, 𝑝1, 𝜀1 are parameters satisfying 𝜂𝑘 ≥ 4,
e(𝜌𝑘𝛼)𝜂 ≤ 1, 𝜀1 ≥ 𝜂 + 1/𝑘 and 6𝑘5 ≤ 𝑝1 ≤ e𝑘−2𝛼. Then with probability 1 − 𝑜(1/𝑛) over the
choice of random formula Φ, for any 𝑉 ′ ⊆ 𝑉 of size |𝑉 ′ | ≥ log 𝑛 connected in 𝐻Φ = (𝑉, E), it holds that
|𝑉 ′ ∩𝑉bad | ≤ 12𝑘5

(𝜀1−𝜂) 𝑝1 |𝑉
′ |.

Proof. Let 𝑉1, 𝑉2, . . . , 𝑉ℓ be connected components in 𝐻Φ [𝑉bad] that intersects 𝑉 ′, and let

𝑉 = 𝑉 ′ ∪𝑉1 ∪𝑉2 ∪ · · · ∪𝑉ℓ .
Note that 𝑉 is connected in 𝐻Φ, and HD(𝑉) = HD(𝑉1) ∪HD(𝑉2) ∪ · · · ∪HD(𝑉ℓ).

By Lemma A.12, we have |𝑉𝑖 | ≤ 2 |HD(𝑉𝑖) | /(𝜀1 − 𝜂). By Proposition A.8, we have

��HD(𝑉)�� ≤
6𝑘5

��𝑉 �� /𝑝1. Thus, it follows that��𝑉 ∩𝑉bad

�� = ℓ∑︁
𝑖=1

|𝑉𝑖 | ≤
2

𝜀1 − 𝜂

ℓ∑︁
𝑖=1

|HD(𝑉𝑖) | ≤
2

𝜀1 − 𝜂
·
6𝑘5

��𝑉 ��
𝑝1

.

Since 𝑉 \𝑉 ′ ⊆ 𝑉bad, we conclude that

|𝑉 ′ ∩𝑉bad |
|𝑉 ′ | ≤

|𝑉 ′ ∩𝑉bad | +
��𝑉 \𝑉 ′��

|𝑉 ′ | +
��𝑉 �� =

��𝑉 ∩𝑉bad

����𝑉 �� ≤ 12𝑘5

(𝜀1 − 𝜂)𝑝1
. □

As a corollary, we obtain the proof of Property 3.11.

Lemma A.14. For any fixed 𝑘 and 𝛼, assume 𝜂, 𝜌, 𝑝1, 𝜀1 are parameters satisfying 𝜂𝑘 ≥ 4, e(𝜌𝑘𝛼)𝜂 ≤ 1,
𝜀1 ≥ 𝜂 + 1/𝑘 and 6𝑘5 ≤ 𝑝1 ≤ e𝑘−2𝛼. Then with probability 1− 𝑜(1/𝑛) over the choice of random formula
Φ, for any E′ ⊆ E of size |E′ | ≥ log 𝑛 connected in the line graph of 𝐻Φ = (𝑉, E) (namely, connected in
𝐺Φ), it holds that |E′ ∩ Ebad | ≤ 12𝑘5

(1−𝜂) (𝜀1−𝜂) 𝑝1 |E
′ |. In particular, 𝐻Φ satisfies Property 3.11 if 𝜀1 = 2𝜂

and 𝜀2 =
12𝑘5

(1−𝜂)𝜂𝑝1 .

Proof. Let 𝑉 ′ = ∪𝑒∈E′𝑒. Clearly, 𝑉 ′ is connected in 𝐻Φ, and |𝑉 ′ | ≤ 𝑘 |E′ |.
We first assume that |E′ | ≤ 𝜌 |E |. Then Lemma A.3 applies. It implies that |𝑉 ′ | ≥ (1−𝜂)𝑘 |E′ | ≥ log 𝑛,

and thus Proposition A.13 applies. Therefore, we obtain

|𝑉 ′ ∩𝑉bad | ≤
12𝑘5

(𝜀1 − 𝜂)𝑝1
|𝑉 ′ | ≤ 12𝑘6

(𝜀1 − 𝜂)𝑝1
|E′ | .

Note that, each hyperedge in E′ ∩ Ebad is a subset of 𝑉 ′ ∩𝑉bad. Applying Lemma A.3 again, we have

|E′ ∩ Ebad | ≤
|𝑉 ′ ∩𝑉bad |
(1 − 𝜂)𝑘 ≤

12𝑘5

(1 − 𝜂) (𝜀1 − 𝜂)𝑝1
|E′ | .

Now we consider the case where |E′ | > 𝜌 |E |. Again, note that each hyperedge in E′∩Ebad is a subset

of 𝑉bad, and |𝑉bad | ≤ 2e−𝑘𝛼−2 |𝑉 | /(𝜀1 − 𝜂) < 𝜌 |E | /((1 − 𝜂)𝑘) by Proposition A.2 and Lemma A.12 if

we set 𝜂 ≥ 4/𝑘 and e(𝜌𝑘𝛼)𝜂 = 1. So Lemma A.3 applies to 𝑉bad, and we conclude that

|E′ ∩ Ebad | ≤
|𝑉bad |
(1 − 𝜂)𝑘 ≤

2 |E |
e𝑘𝑘𝛼3(1 − 𝜂) (𝜀1 − 𝜂)

<
12𝑘5

(1 − 𝜂) (𝜀1 − 𝜂)𝑝1
|E′ | . □

Finally, it is a direct corollary of Property 3.11 that 𝐻Φ has no connected components of size ℓ ≥ log 𝑛
in the line graph induced by bad hyperedges.
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