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Variables:   with finite domains   for each  


Constraints:   with each   defined on  


                       True, False}


CSP solution:  assignment   s.t. all constraints evaluate to True
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In statistical physics: dilute mean-field spin glasses
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Example: hypergraph  -coloring 
 -uniform hypergraph   
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q
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Example: random hypergraph  -coloring 
Erdös-Rényi hypergraph    
color set   for each   
Solution: an assignment such that no hyperedge 
(constraint) is monochromatic 

q
H(k, n, ⌊αn⌋)

[q] v ∈ V

Example: random  -SAT 
  
 ,   chosen from all size- 
subsets of   literals u.a.r. (multiplicities allowed) 
  for each   
Solution: an assignment such that each clause 
(constraint) evaluates to   

k
V = {x1, x2, …, xn}
𝒞 = (C1, C2, …, C⌊αn⌋) Ci k

2n
Qv ∈ {𝖳𝗋𝗎𝖾, 𝖥𝖺𝗅𝗌𝖾} v ∈ V
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• Satisfiability: when does a solution exist w.h.p? 


• Algorithmic: ~ find a solution efficiently found w.h.p? 


• Sampling/Counting: ~ sample/count the solutions efficiently w.h.p?    

Solution space geometry

• Connectivity: How do the solution clusters behave?


• Correlation: Do long-range correlations exist? 
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2k

poly(k)
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Main Result

The exists a universal constant   such that if


 


Then the following exists w.h.p. over the choice of a random  -SAT formula 
 


• Sampling algorithm:

draw an assignment  -close to a uniform solution of   within time  


• Deterministic Counting algorithm:

 -estimates the number of solutions of   within time  .

c ≥ 1

0 < α ≤
2k

kc
,

k
Φ = Φ(k, n, ⌊αn⌋) .

ε Φ (n/ε)poly(k,α)

ε Φ (n/ε)poly(k,α)

Sampling/Counting Random  -SAT near the Satisfiability Thresholdk
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We can compare it to  -SAT with maximum degree  k d = kα
[Bezáková, Galanis, Goldberg, Guo, Štefankovič ’19]: NP-hard when  !d ≳ 2k/2

Searching intractableSampling intractableSampling tractable

bounded degree  
           -SAT k

     

[WY ’24] [She ’98, MT ’10]

[Coj ’10, BH’22,DSS ’22]

[BGGGŠ ’19]

≲ 2k/2 d/kα≲ 2k

This workrandom  -SAT k

≲ 2k/4.82

Random  -SAT is computationally easier to sample/count!k
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Cavity method: studies the influence of the solution space of flipping one variable

Conjecture: non-reconstruction holds up to   [MPZ ’02, MRT ’11]αclust
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lim
r→∞

lim sup
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For a uniform satisfying assignment  any  , and induced hyper graph  σ, v ∈ V H = HΦ

where  .B̄H(v,r) ≜ {u ∈ V ∣ distH(u, v) ≥ r}
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there exists a coupling   of   and   for any   such that
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0 < α ≤
2k

kc
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Inspired by the coupling in [W., Yin ’24] for bounded degree CSPs

Decay of Correlation



We want to couple   with  .μ𝒞∖{c0} μ𝒞

(V, 𝒞)(V, 𝒞∖{c0})

red clause: need at least one red variable 
green clause: need at least one green variable

Recursive Coupling [WY ’24]
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All randomness by the procedure can be identified by two independent samples:
𝔛 ∼ μ𝒞∖{c0}, 𝔜 ∼ μ𝒞 .

Sampling by marginal distribution = Revealing local information of   and  𝔛 𝔜
The principle of deferred decisions!
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(Original) Analysis of the Coupling

 witness argument:   contraction of the couplingd ≲ 2k/4.82 ⟹

(V, 𝒞∖{c0}) (V, 𝒞)

[HSS ’14]: when  , a uniform random solution is locally close to uniform d < 2k /e
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Separating High-Degree Variables

[GGGY’ 21, HWY ’23]: when   and  , the “bad” variables are 
well-behaved with high probability: 
• Bounded number of bad vertices:   
• Bounded fraction of bad hyperedges: For any connected subset of hyperedges in 

  with size  , the number of bad hyperedges is at most  . 

D = poly(k) ⋅ α ε = O(1/k)

|Vbad | ≤ 4ε−1n

Lin(HΦ) ℓ ≥ log n O(ℓ/k)

Given degree threshold  , parameter   and underlying hyper graph  :  
• Initialize  ; 
• While   s.t.  : 

• update  

D ε HΦ = (V, ℰ)
Vbad = {v ∈ V |deg(v) ≥ D}, ℰbad = ∅

∃e ∈ ℰ∖ℰbad |e ∩ Vbad | > (1 − ε)k
ℰbad ← ℰbad ∪ {e}, Vbad ← Vbad ∪ {e}
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Vbad = {v ∈ V |deg(v) ≥ D}, ℰbad = ∅

∃e ∈ ℰ∖ℰbad |e ∩ Vbad | > (1 − ε)k
ℰbad ← ℰbad ∪ {e}, Vbad ← Vbad ∪ {e}

 Almost reduces to the bounded-degree case!
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main technical 
contribution!



𝔛 ∼ μ𝒞∖{c0} 𝔜 ∼ μ𝒞

We want to bound the probability of the coupling running for too long: 
                 find a witness whose probability can be easily bounded

witness in [WY ’24]:  -tree [Alon’ 91] to remove dependency2
our witness: a denser witness tree [Moser, Tardos ’10]

Improved Analysis for Random  -SATk
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An Improved Witness
All constraints chosen in the coupling are connected in  .Lin(HΦ)

c0

c1 c2

c3c4

The coupling assigns   constraints 

  (connected induced subgraph)

i

c0 c3

2-tree: maximal independent  
set connected in the square graph

occurs with probability at most  (2−k)i/2

c0

c3

c1

witness tree: a tree structure to capture 
A “local total ordering”

occurs with probability near  (2−k)i

expansion property of random instances! 
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Algorithmic Implications
We cannot really run the coupling, but we can write down linear programs that 
encode coupling errors to bootstrap the marginal probability. 

locally contractive  
          coupling 

efficient marginal  
          estimator 

This method was invented by Moitra [Moi ’19], applied in other works for sampling/
counting bounded degree CSP solutions, [GLLZ ’19, JPV ’21b, WY ’24], and has 
recently been applied to other sampling/counting settings. [HLQZ ’24, CFGZZ ’24]



Summary
We present polynomial-time algorithms for approximate counting/almost uniform sampling 
random  -SAT solutions with high probability under the regime  , which is

near the satisfiability threshold.

Our regime bypasses the lower bound of bounded-degree  -SAT, showing that random 
instances are computationally easier to sample.

Our result also gives formal proofs to several correlation decay properties such as replica 
symmetry and non-reconstruction under the same regime.
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• sampling algorithm with a faster running time? (our sampler works in   time)
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Open Problems
• Can we prove  -connectivity under the same regime?

• What is the exact sampling threshold for random  -SAT (maybe  )?

• sampling algorithm with a faster running time? (our sampler works in   time)

O(log n)
k αclust

npoly(k,α,log q)

Thank you!


