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Constraints: 6 = {c, ¢,, ..., C, } with each ¢ € € defined on vbl(c) C V

C : ® Q, — {True, False}

vevbl(c)

CSP solution: assignment X & ® (), s.t. all constraints evaluate to True

veV

Random CSP: constraints generated randomly
with a fixed density a = m/n

In . dilute mean-field spin glasses



Example: k-SAT
V=1{x,x%,....%,}

€ =(C,C,....,C), |C|=k

Q, € {True,False} foreachv € V

Solution: an assignment such that each clause
(constraint) evaluates to True

Example: hypergraph g-coloring
k-uniform hypergraph H = (V, &)
color set [g] foreachv € V

Solution: an assignment such that no hyperedge
(constraint) is monochromatic
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Example: random k-SAT

V=1{x,X%,....,%,}

6 = (C}, Gy, ..., Cpgpy)s G chosen from all size-k
subsets of 2n literals u.a.r. (multiplicities allowed)

Q, € {True, False} foreachv € V
Solution: an assignment such that each clause
(constraint) evaluates to True

Example: random hypergraph g-coloring
Erdos-Rényi hypergraph H(k, n, |an|)
color set [g] foreachv € V

Solution: an assignment such that no hyperedge
(constraint) is monochromatic
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The Random 4A-SAT

O(k,n,m = |an|): n variables, m = |an |random clauses of size k.

Central question: how the random k-SAT behaves as a changes?

Algorithmic aspects
o Satisfiability: when does a solution exist w.h.p?

* Algorithmic: ~ find a solution efficiently found w.h.p?

 Sampling/Counting: ~ sample/count the solutions efficiently w.h.p?

Solution space geometry
* Connectivity: How do the solution clusters behave?

* Correlation: Do long-range correlations exist?
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Heuristic graph from [ Ding, Sly, Sun, Ann. Math. 2022]

[Ding, Sly, Sun’ 22]: a, = 2XIn2 — (1 +1n2)/2 + 0,(1) The satisfiability threshold!
[Achlioptas, Coja-Oghlan’ 08]: @y, & 25(Ink)/k
|Coja-Oghlan” 10]: efficient search algorithm when a < (1 — Ok(l))2k(ln k)/k

[Bresler, Huang’ 22]: low degree polynomial algorithms fail when a < 4.91(2* In k/k)
The algorithmic threshold?
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The Sampling/Counting Threshold

. o that we can efficiently sample/count solutions to ®(k, n, |an|)

[Galanis, Goldberg, Guo, Yang’ 21]: a < 243 FPTAS
|Chen, Galanis, Goldberg, Guo, Herrera-Poyatos, Mani, Moitra '24]: a < 0039 fast sampler

|He, Wu, Yang 23]: a S K3 fast sampler

Sampling tractable Searching tractable? Satisfiable Not satisfiable

k
S 217 2~ 2KInk)/k a, =2In2—(1+1n2)/2+0(1) @
poly(k) [Ding, Sly, Sun ’22]

Is counting/sampling tractable up to the algorithmic threshold?



Main Result
Sampling/Counting Random k-SAT near the Satisfiability Threshold

The exists a universal constant ¢ > 1 such that if

2k
O<a<<—,
k¢
Then the following exists w.h.p. over the choice of a random k-SAT formula
O =Dk, n, |lan]).
« Sampling algorithm:

draw an assignment e-close to a uniform solution of @ within time (n/&)PCY*.®)

* Deterministic Counting algorithm:

e-estimates the number of solutions of @ within time (12/&)PY &)



Bounded-Degree k-SAT

random k-SAT with density « = average degree ka
We can compare it to k-SAT with maximum degree d = ko



Bounded-Degree k-SAT

random k-SAT with density « = average degree ka
We can compare it to k-SAT with maximum degree d = ko

[Bezakova, Galanis, Goldberg, Guo, Stefankovié¢ '19]: NP-hard when d > QKl2)



Bounded-Degree k-SAT

random k-SAT with density « = average degree ka
We can compare it to k-SAT with maximum degree d = ko

[Bezdkovéa, Galanis, Goldberg, Guo, Stefankovi¢ '19]: NP-hard when d > QK2

Sampling tractable Sampling intractable Searching intractable

bounded degree 5
k-SAT E E [She 98, MT ’10]

random k-SAT [Coj 10, BH'22,DSS "22]




Bounded-Degree k-SAT

random k-SAT with density « = average degree ka
We can compare it to k-SAT with maximum degree d = ko

[Bezdkovéa, Galanis, Goldberg, Guo, Stefankovi¢ '19]: NP-hard when d > QK2

Sampling tractable Sampling intractable Searching intractable
bounded degree 5
k-SAT E E [She 98, MT ’10]

random k-SAT [Coj 10, BH'22,DSS "22]

5 2k/4.82 5 2k/2 < 2k d/ ko

Random k-SAT is computationally easier to sample/count!
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Replica symmetry
For a uniform satisfying assignment &, and two uniform random variables v, v, € V,

lim |Prlo(v,) = 6(v,) = True] — Prlo(v,) = True|Pr[o(v,) = True]| = 0.

n— Qoo

Conjecture: replica symmetry holds up to a4 | COKPZ 17, COEJ et. al."18
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Cavity method: studies the influence of the solution space of flipping one variable

Non-reconstruction
For a uniform satisfying assignment ¢, any v € V, and induced hyper graph H = Hyg,

lim lim sup [ [dTV (:M{v}UBH(V,r)’//tv ® ﬂBH(v,r)>] =0,

Fr— Qo0 11— 0O

where By, , = = {u € V| disty(u,v) > r}.

Conjecture: non-reconstruction holds up to o, [MPZ 02, MRT "11]



Decay of Correlation

Theorem. (Decay of correlation for random k-SAT)
Let ® = (V,6) ~ ©(k,n, |an|). The exists a universal constant ¢ > 1 such that if

2k
OD<a<<—,
kc

there exists a coupling (X, ) of pe\ (., and pe tor any ¢ € € such that

- [diy. (X, Y)] = O(logn) .

Uz : uniform distribution over solutions of (V, €)

He\ (¢, - uniform distribution over solutions of (V, €\ {c})
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Decay of Correlation

Theorem. (Decay of correlation for random k-SAT)
Let ® = (V,6) ~ ©(k,n, |an|). The exists a universal constant ¢ > 1 such that if

2k
OD<a<<—,
kc

there exists a coupling (X, Y) of pig\ (., and pig for any ¢ € € such that

- [dy. (X, Y)] = O(logn).

U = uniform distribution over solutions of (V, €)

He\ (¢, - uniform distribution over solutions of (V, €\ {c})

Formal proofs of replica symmetry and non-reconstruction under the same density!

Inspired by the coupling in [W., Yin ’24] for bounded degree CSPs



Recursive Coupling [WY '24]

(V,€\{c}) (V,6)

red clause: need at least one red variable

green clause: need at least one green variable

We want to couple pig\ (. y With pe.
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(V,€\{cp}) (V, )

with prob. pe (. 1(¢p), couple pg with pg;  can be perfectly coupled!
with prob. pe (. 1(7¢p), couple pg (. y(+ | 7€) with pue.
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Recursive Coupling [WY '24]
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Simplify the formula, we are done if the set of clauses are the same.

Otherwise, we pick any clause in the discrepancy set and recurse!
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Recursive Coupling [WY '24]
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Simplify the formula, we are done if the set of clauses are the same.

Otherwise, we pick any clause in the discrepancy set and recurse!
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(Orlglnal) Analy5|s of the Coupllng

(V,€\{c}) (V,6)

All randomness by the procedure can be identified by two independent samples:
X~ tg\(e) D~ Heg-
Sampling by marginal distribution = Revealing local information of X and %)

The principle of deferred decisions!



(Orlglnal) Analy5|s of the Coupllng

(Va %\{CO}) (Va %)

[HSS "14]: when d < 2*/e, a uniform random solution is locally close to uniform

witness argument: d < 2¥*%2 — contraction of the coupling
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Separating High-Degree Variables

Given degree threshold D, parameter € and underlying hyper graph Hg = (V, &):
o Initialize V, 4 = (v € V|deg(v) > D}, &4 = D
e While de € &\ &}, 4s.t. lenV, 4] > (1 — e)k:

e update &4 < .U e}, Vig < VigU L€}

|GGGY’ 21, HWY "23]: when D = poly(k) - @ and € = O(1/k), the “bad” variables are
well-behaved with high probability:

~1
| Vi.g|l < 4e'n

» Bounded fraction of bad hyperedges: For any connected subset of hyperedges in
Lin(Hg) with size £ > log n, the number of bad hyperedges is at most O(£/k).



Separating High-Degree Variables

Given degree threshold D, parameter € and underlying hyper graph Hg = (V, &):
o Initialize V, 4 = (v € V|deg(v) > D}, &4 = D
e While de € &\ &, s.t. [enV, 4] > (1 —ée)k:

e update &4 < .U e}, Vig < VigU L€}

|GGGY’ 21, HWY "23]: when D = poly(k) - @ and € = O(1/k), the “bad” variables are
well-behaved with high probability:

~1
| Vi.g|l < 4e'n

» Bounded fraction of bad hyperedges: For any connected subset of hyperedges in
Lin(Hg) with size £ > log n, the number of bad hyperedges is at most O(£/k).

Almost reduces to the bounded-degree case!
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Improved AnaIyS|s for Random k-SAT

(Va %\{CO})

Challenges for random k-SAT:
1. Existence of high-degree variables main technical

TS
2. Original analysis leads to an exponent of 2 + o, (1) contribution!



Improved Analysis for Random k-SAT

We want to bound the probability of the coupling running for too long:
find a witness whose probability can be easily bounded

witness in [ WY '24]: 2-tree | Alon’ 91] to remove dependency

our witness: a denser witness tree [Moser, Tardos 10}



An Improved Withess

All constraints chosen in the coupling are connected in Lin(Hg).

The coupling assigns 1 constraints
(connected induced subgraph)



An Improved Withess

All constraints chosen in the coupling are connected in Lin(Hg).

The coupling assigns 1 constraints
(connected induced subgraph)

2-{ree:
connected in the square graph

occurs with probability at most (27%)”*



An Improved Withess

All constraints chosen in the coupling are connected in Lin(Hg).
> Co

The coupling assigns 1 constraints
(connected induced subgraph)

2-tree: witness tree: a tree structure to capture
connected in the square graph A “local total ordering”

occurs with probability at most (27%)"° occurs with probability near (27"’



An Improved Withess

All constraints chosen in the coupling are connected in Lin(Hg).
™ G

The coupling assigns 1 constraints
(connected induced subgraph)

2-tree: maximal independent witness tree: a tree structure to capture
set connected in the square graph A “local total ordering”

: . K — kN1
occurs with probability at most (27%)"° occurs with probability near (27)'

expansion property of random instances!
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Algorithmic Implications

We cannot really run the coupling, but we can write down linear programs that
encode coupling errors to bootstrap the marginal probability.

This method was invented by Moitra [ Moi '19], applied in other works for sampling/
counting bounded degree CSP solutions, | GLLLLZ '19, JPV "21b, WY "24], and has
recently been applied to other sampling/counting settings. | HL.LQZ 24, CFGZZ 24|

efficient marginal
estimator

locally contractive

: —
coupling




f We present polynomial-time algorithms for approximate counting/almost uniform sampling
| random k-SAT solutions with high probability under the regime a < 2*/poly(k), which is

| near the satisfiability threshold.

f Our regime bypasses the lower bound of bounded-degree k-SAT, showing that random

| iInstances are computationally easier to sample.

Our result also gives formal proofs to several correlation decay properties such as replica
symmetry and non-reconstruction under the same regime.



f We present polynomial-time algorithms for approximate counting/almost uniform sampling
| random k-SAT solutions with high probability under the regime a < 2*/poly(k), which is

| near the satisfiability threshold.

f Our regime bypasses the lower bound of bounded-degree k-SAT, showing that random

| iInstances are computationally easier to sample.

Our result also gives formal proofs to several correlation decay properties such as replica
symmetry and non-reconstruction under the same regime.

Open Problems ’

» Can we prove OJ(log n)-connectivity under the same regime?
« What is the exact sampling threshold for random k-SAT (maybe . .;,,)?

clust/
« sampling algorithm with a ? (our sampler works in nPOY&®10g4) time)



f We present polynomial-time algorithms for approximate counting/almost uniform sampling
| random k-SAT solutions with high probability under the regime a < 2*/poly(k), which is

| near the satisfiability threshold.

f Our regime bypasses the lower bound of bounded-degree k-SAT, showing that random

| iInstances are computationally easier to sample.

Our result also gives formal proofs to several correlation decay properties such as replica
symmetry and non-reconstruction under the same reglme
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