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Spin Systems and Gibbs sampling

graph ￼    ￼  statesG = (V, E ) q ≥ 2

configuration    ￼  σ ∈ [q]V

external fields   ￼   for each ￼  λv ∈ ℝq
≥0 v ∈ V

interaction matrix  ￼   for each ￼  Ae ∈ ℝq×q
≥0 e ∈ E

weight:  ￼  w(σ) = ∏
v∈V

λv(σ (v)) ∏
(u,v)∈E

Ae(σ (u), σ (v))

Gibbs distribution: ￼μ(σ) =
w(σ)

Z

partition function: ￼  Z = ∑
σ∈[q]V

w(σ)

(Systematic Scan) Gibbs Sampling/Glauber Dynamics
start with arbitrary configuration ￼  with ￼ ; 
at each time ￼  : 

 pick the vertex ￼ ; (assume ￼ ); 
 resample ￼ ; 

return ￼ ;

σ w(σ) > 0
1 ≤ t ≤ T

v = vt mod n V = {v0, …, vn−1}
σv ∼ μv ( ⋅ ∣ σV ∖{v})

σ converges to ￼  as ￼ !μ T → ∞

Coupling Towards The Past (CTTP)

Local Uniformity (Marginal Lower Bound)  

 ￼∀c ∈ [q], μmin
v (c) ≜ min

μ(σV ∖{v})>0
μv (c ∣ σV ∖{v})

￼ (locally) uniform: ￼θ− ∑
c∈[q]

μmin
v (c) ≥ θ

draw ￼  and ￼  such thatrt ∼ Ber(θ ) σv

Pr[σv = c] ∝
μmin

v (c) rt = 1

μv (c ∣ σN(v)∖{v}) − μmin
v (c) rt = 0

￼  σv ∼ μv ( ⋅ ∣ σV ∖{v})

With probability ￼ , an update can be directly resolved!θ

…

… ? ? ? ? ?

outcome … ? ? ? ? ? ? ?

rt

t

0 1 1 0

sufficient condition for termination: ￼  (￼ : maximum degree of graph)(1 − θ )Δ ≤ 1 Δ

naming: hidden (default) grand coupling + backward deduction of states 

Application: Deterministic Counting
CTTP often gives exponential tail bound: ￼Pr[trun ≥ T ] ≤ exp(−O(T ))

truncate up to ￼  random bits: ￼ -approximate marginalsK = OΔ (log
n
ε ) ε

brute force enumeration 
￼  efficient deterministic approximate counting matching MCMC bounds→

Extending CTTP:  
Local Sampling near Criticality

Instance
Tractable regimes Our result 

(local sampling)Global sampling Local sampling
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• first local sampler for near-critical Ising model; 
• first local sampler for ￼ -coloring (also near-critical); 
• perfect samplers;  
• expected linear running time: ￼  for Ising; 
                                                           ￼  for ￼ -colorings.

q

O(Δ ⋅ |Λ | )
O(Δ2q ⋅ |Λ | ) q
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Idea: Imagine the chain runs from the infinite past to time ￼ , 
can we somehow deduce its final state (distributed as ￼  ?

0
μ)

if only we can resolve an update without knowing the current configuration…

Otherwise, we need to know its neighbors’ states to determine…

a perfect (no bias) local (produces local samples within local time) sampler

a direct-sum style decomposition of Markov chains: 
resolving a single update takes ￼  time of learning the entire configurationO(1/n)

also applies to problems with high-order constraints
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Hypergraph Independent Sets (HIS)
Let ￼  be a hypergraph. 
￼  is a (weak) independent set if ￼  for all ￼ .

H = (V, ℰ)
S ⊆ V S ∩ e ≠ e e ∈ V

We obtain optimal (on the exponent) deterministic approximate counting 
algorithms for ￼ -uniform (￼  for all ￼  HIS:k |e | = k e ∈ ℰ)

Application: Analytical Stability
CTTP provides a direct-sum style decomposition of the Gibbs measure. 

lift to the complex plane 
￼  analytical stability of certain polynomials matching MCMC bounds→

Hypergraph Independence Polynomial (HIP)
Let ￼  be a hypergraph and ￼  collect its independent sets. 
The (univariate) independence polynomial ￼  of ￼  is given as: 

H = (V, ℰ) Ω
ZH : ℂ → ℂ H

ZH(λ) = ∑
S⊆Ω

λ|S|

Complex zeroes of ￼  are often called Lee-Yang zeroes. ZH(λ)

We obtain optimal (on the exponent) zero-free regions for ￼ -uniform HIP:k

The requirement of local uniformity may be restrictive for certain models.
improved grand coupling and deduction rules 

￼  efficient local samplers near criticality for Ising model and ￼ colorings→ q−

￼𝖱𝖾𝗌𝗈𝗅𝗏𝖾(t)

return sample ￼  
w.p.￼  

c
∝ μmin

v (c)
recursively call ￼  
for each ￼  to obtain ￼

𝖱𝖾𝗌𝗈𝗅𝗏𝖾(predt(u))
u ∈ N(v) σN(v)

= ⟹

￼  μv ( ⋅ ∣ σN(v)∖{v})

return sample ￼  w.p.
￼  

c
∝ μv (c ∣ σN(v)∖{v}) − μmin

v (c)

rt = 1 rt = 0

￼ : last visit  
time of ￼  before ￼ 
predt(u)

u t

Risk of Infinite Recursion?


