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CTTP often gives exponential tail bound: Pr[z,,, > T] < exp(=O(T))
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Gibbs distribution: M ((7 ) = 7 Hypergraph independent sets ‘ Reference ‘ Bound ‘ Running time
: - Randomised [BDK08, BDK06] A<k-2 O0(n2) / O(nlogn)
(Systematic Scan) Gibbs Sampling/Glauber Dynamics counting / sampling [HSZ19,QWZ22] | A5 242 O(n?) / O(nlogn)
start with arbitrary configuration ¢ with w(o) > 0; [BGG*19] A<k 7O (log(kA))
ateachtime 1 <t < T: Deterministic [JPV21b] A< 2KI7 poly (k.A)
pick the vertex v = v, 4,5 (@assume V = {vy,...,v,_1}); counting [HWY23] A < 9k/5 poly(k.A)
resample 6, ~ p, | - | o\ () )5 Our result A5 242 npoly (k)
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assuming P # NP

Coupling Towards The Past (CTTP) Application: Analytical Stability

CTTP provides a direct-sum style decomposition of the Gibbs measure.

lift to the complex plane
— analytical stability of certain polynomials matching MCMC bounds

Idea: Imagine the chain runs from the infinite past to time 0,
can we somehow deduce its final state (distributed as y) ?

if only we can resolve an update without knowing the current configuration...

Hypergraph Independence Polynomial (HIP)

" . Let H = (V, &) be a hypergraph and Q collect its independent sets.
veelqd. p \ﬂnin(c) A " (c | Uv\{v}> The (univariate) independence polynomial Z;; : C — C of H is given as:
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We obtain optimal (on the exponent) zero-free regions for k-uniform HIP:
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With probability 8, an update can be directly resolved!

Rapid mixing of Markov chains

[HSZ19, HSW21, QWZ22, FGW+23]

Otherwise, we need to know its neighbors’ states to determine... Extending CTTP:
=1 Resolve) ) =0 Local Sampling near Criticality
/ The requirement of local uniformity may be restrictive for certain models.

return sample ¢ pred oy stvist | LECUTSively call Resolve(pred, (1)) N improved grand coupling and deduction rules .
w.p. o uMin(c) timeofubetore: \ for each u € N(v) to obtain oy, — efficient local samplers near criticality for Ising model and g—colorings
return sample ¢ w.p. Tractable regimes Our result
min . . ) Instance .
o fi, | € | Oy vy ) — Hv'(€) | Risk of Infinite Recursion? Global sampling | Local sampling (local sampling)
t o | -8 =7 |-6|-5]|-4|-3]|-2]|-1]0 Ising model pe (%ﬁ) /e (1‘ @(1Az>"+ @(lAz>) re (555 555)
Iy | 210 ? ? 1 ? |1 ? 10 g-colorings g > 1.809A N/A g = 65A
oucome | ... | ?2 | 2| 2| ? ? - ?7 1 7? o first local sampler for near-critical Ising model;

first local sampler for g-coloring (also near-critical);
perfect samplers;
expected linear running time: O(A - | A|) for Ising;

sufficient condition for termination: (1 — #)A < 1 (A: maximum degree of graph)
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a perfect (no bias) local (produces local samples within local time) sampler O(A%q - | A]) for g-colorings.
. . . 1. Towards Derandomising Markov Chain Monte Carlo. Weiming Feng, Heng Guo, Chunyang
a direct-sum style decomposition of Markov chains: Wang, Jiaheng Wang, Yitong Yin. In SICOMP ’25 (preliminary version in FOCS *23).

: : : : : : 2. Phase Transitions via Complex Extensions of Markov Chains. Jingcheng Liu, Chunyang
resolving a single update takes O(1/n) time of learning the entire configuration Wang, Yitong Yin, Yixiao Yit. In STOC "5,

‘o hi : : 3. Local Gibbs Sampling beyond Local Uniformity. Hongyang Liu, Chunyang Wang, Yitong
naming: hidden (default) grand coupling + backward deduction of states Yin. To appear in SODA "26.



