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LOCAL GIBBS SAMPLING BEYOND LOCAL UNIFORMITY

HONGYANG LIU, CHUNYANG WANG, YITONG YIN

ABSTRACT. Local samplers are algorithms that generate random samples based on local queries to high-
dimensional distributions, ensuring the samples follow the correct induced distributions while maintaining
time complexity that scales locally with the query size. These samplers have broad applications, including
deterministic approximate counting [HWY23, FGW*23], sampling from infinite or high-dimensional
Gibbs distributions [AJ22, HWY22], and providing local access to large random objects [BRY20].

In this work, we present local samplers for Gibbs distributions of spin systems. Specifically, we design
linear-time local samplers for:

e spin systems with soft constraints, including the first local sampler for near-critical Ising models;

e truly repulsive spin systems, represented by the first local sampler for uniform proper g-colorings,

with ¢ = O(A) colors on graphs with maximum degree A.

These local samplers are efficient beyond the “local uniformity” threshold, which imposes unconditional
marginal lower bounds — a key assumption required by all prior local samplers. Our results show that, in
general, local sampling is not significantly harder than global sampling for spin systems. As an application,
our results also imply local algorithms for probabilistic inference in the same near-critical regimes.

1. INTRODUCTION

Spin systems, which originated in statistical physics, are stochastic models characterized by local
interactions. These models have not only advanced our understanding of physical phenomena, such
as phase transitions and criticality, but have also become central to machine learning and theoretical
computer science, particularly in the study of sampling and inference problems in complex distributions.

Let ¢ > 2 be an integer. A g-spin system S = (G = (V,E), A = (4y)vev, A = (A¢)eck) is defined on

a finite graph G = (V, E), where each vertex is associated with an external field 1,, € Rio’ and each
edge e € E is associated with an interaction matrix A, € R%q. A configuration o € [¢]V assigns a

spin state from [¢] to each vertex v € V.
The Gibbs distribution y1 = u® over all configurations o € [¢]V is given by:

ue) 20 ey 2 [aeon [ Adew.ow)).
veV e=(u,v)eE
where the the normalizing factor Z = 3., ¢[,v w(0) is the partition function.

A central question in the study of spin systems is sampling from their associated Gibbs distributions.
For well-known models such as the hardcore model and the Ising model, a critical threshold determined
by the system’s parameters has been identified, beyond which sampling from the Gibbs distribution
becomes NP-hard [SS14, G§V16]. Recent breakthroughs have shown that the Glauber dynamics, a
widely-used Markov chain, mixes rapidly up to these critical thresholds for specific spin systems,
including the hardcore model and the Ising model [ALO20, CLV20, CLV21, CFYZ21, AJK*22, CE22,
CFYZ22]. These results provide a comprehensive characterization of the computational phase transition
inherent in sampling from the Gibbs distributions of such spin systems.

1.1. Local sampling and local uniformity. Recent research has increasingly focused on local sam-
pling techniques for high-dimensional Gibbs distributions [AJ22, AGPP23, FGW*23]. Rather than
directly drawing a global sample from the Gibbs distribution y, such algorithms aim to answer on-
demand local queries on a small subset of vertices A C V, and returns a sample approximately distributed
according to the marginal distribution of u induced on A, at a local cost that depends only on the size
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of the query set |A| (and not on the total size |V| of the spin system). For a subset of vertices A C V, the
marginal distribution p, is defined as:
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Then, the local sampling problem is defined as follows:

The local sampling problem

Input: A spin system S = (G, 4, A), where G = (V, E), and a subset of vertices A C V;
Goal: Generate a sample X ~ p in time that scales near-linearly in |A|.

Local sampling can, of course, solve global sampling by simply querying all vertices or using the
auto-regressive sampler for self-reducible problems, as in [AJ22, HWY22]. Beyond this, these local
samplers offer the ability to “scale down” the sampling process, addressing the challenge of providing
local access to large random objects [BRY20], where sublinear computational costs are required for
sublinear-size queries. For applications, efficient local samplers directly imply efficient algorithms
for probabilistic inference for self-reducible problems, and can possibly lead to efficient approximate
counting algorithms [HWY23, FGW*23, AFF*24, AFG*25].

However, existing local samplers for spin systems [AJ22, AGPP23, FGW*23] rely on the assumption
of unconditional marginal lower bounds, also known as the “local uniformity” property. This assumption
requires that the marginal distribution of each vertex remains nearly identical across all neighboring
configurations, which may be excessively restrictive for various problems.

Consider, for example, the Ising model with edge activity 8 > 0 and an arbitrary external field.
The Ising model, introduced by Ising and Lenz [Isi25], has been extensively studied in various fields.

1
Formally, it is a 2-spin system with A, = at each edge e € E and arbitrary 4, ateach v € V.
LB
Sampling from its Gibbs distribution can be achieved through Glauber dynamics, which mixes rapidly
under the well-known “uniqueness condition”:
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where A is the maximum degree of the underlying graph. Beyond this, either Glauber dynamics becomes
torpidly mixing, or the sampling problem itself becomes intractable. In contrast, the requirement of
unconditional marginal lower bounds for such models imposes a significantly stricter condition:
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Much greater challenges arise in “truly repulsive” spin systems — most notably, in sampling uniform
proper g-colorings. Given a graph G = (V, E), a proper g-coloring is an assignment o : V — [¢] such
that o (1) # o(v) for all (u,v) € E. This is one of the most extensively studied sampling problems.
(Global) sampling algorithms have gradually lowered the tractability threshold for proper g-colorings
to g > 1.809A [Vig99, CDM*19, CV25], where A is the maximum degree of the graph, while the
uniqueness condition for proper g-colorings is given by ¢ > A + 1. On the other hand, the truly
repulsive nature of proper colorings precludes local uniformity: the marginal probability of a color
at a vertex can drop to zero when a neighbor is assigned that color, so any method that relies on an
unconditional lower bound on the marginals fails. Consequently, to this day, no local sampler is known
for uniform proper g-colorings.

This stark discrepancy raises a fundamental question: Do local samplers exist for such models in
near-critical regimes? Or does local sampling inherently require a significantly more stringent critical
condition compared to global sampling?
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1.2. Our results. In this paper, we address the aforementioned open question by designing new

linear-time local samplers for two fundamental classes of spin systems under near-critical conditions:

models with soft constraints, including the Ising model, and repulsive models, represented by proper

g-colorings, showing that local sampling remains feasible near the global threshold for these models.
Our main contributions, both the first of their kind, are:

o alocal sampler for the Ising model in near-critical regimes;
o alocal sampler for uniform proper g-colorings using g = O(A) colors.
Specifically, our local samplers assume the following natural access model for spin systems.

Assumption 1 (probe access). Let S = (G = (V, E), A, A) be a g-spin system. We assume:

e For each v € V, each neighbor u € N(v) can be accessed in O(1) time.
e Each entry in every A, and A, can be retrieved in O(1) time.

These can be achieved by storing G as an adjacency list and representing 1, and A, as arrays.

1.2.1. Local sampler for spin systems with soft constraints. Our first general result provides a linear-time
local sampler for g-spin systems that satisfy the following sufficient condition.

Condition 1.1 (tractable regime for spin systems with soft constraints). Letd > 0 be a parameter, and
S = (G, 4, A) be a g-spin system on a graph G = (V, E) with maximum degree A > 1. The following
condition holds:

e (Normalized) All A, and A, are normalized, i.e.,

Yv eV, Z A,(c)=1 and VeeE, max A.(i,j)=1.
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This normalization can be enforced without altering the Gibbs distribution.
o (Soft constraints) For every edge e = (u,v) € E and every pair of spin values c1, cs € [q],
1-¢6
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The following theorem presents our local sampler for spin systems with soft constraints.

Theorem 1.2 (local sampler for spin systems with soft constraints). There exists an algorithm that,
given access (as in Assumption 1) to a g-spin system S = (G, A, A) satisfying Condition 1.1, with Gibbs
distribution u = uS, and given a subset of vertices A C V, outputs a perfect sample X ~ up in expected
time O (Alogq - |Al).

The local sampler in Theorem 1.2 is perfect and terminates in time linear in |A| in expectation.
Next, we apply Theorem 1.2 to one of the most important spin systems with soft constraints: the
Ising model. Recall the definition of the Ising model, which is a 2-spin system with an interaction matrix
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at each edge e € E and an arbitrary external field 1, at each vertex v € V. Note that this standard
definition of the Ising model does not satisfy the normalization condition in Condition 1.1 when 8 > 1.
However, we can transform such a (ferromagnetic) Ising model to satisfy this normalization condition,
by using A. /B as the interaction matrix, without altering its Gibbs distribution.

Applying Theorem 1.2 gives the following corollary, where Assumption 1 is implicitly assumed.

Ae

Corollary 1.3 (local Ising sampler). There exists an algorithm that, given a Ising model with Gibbs
distribution p on a graph G = (V, E) with maximum degree A > 1, arbitrary external fields A, at each
v € V, and edge activity 5 satisfying
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and given a subset of vertices A C 'V, outputs a perfect sample X ~ un in expected time O (A - |A]).
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The condition in (3) falls within the same regime of (1 - © (%) ,1+0 (%)) as the uniqueness condition
in (1), substantially improving upon the local uniformity condition in (2).

1.2.2. Local sampler for proper q-colorings. Our next result establishes a linear-time local sampler for
one of the most fundamental repulsive spin systems: the uniform proper g-coloring model. Given
a graph G = (V, E), a proper g-coloring is an assignment o : V — [g] such that o (u) # o(v) for
every edge (u,v) € E. This classical combinatorial model can be viewed as a g-spin system with truly
repulsive hard constraints: the interaction matrix assigns zero weight to configurations where adjacent
vertices share the same color (i.e., zeros on the diagonal) and unit weight otherwise (i.e., ones off the
diagonal).

Uniform sampling of proper g-colorings has long been a central problem in the study of algorithmic
sampling and counting. In a seminal work, Jerrum [Jer95] established optimal mixing of the Glauber
dynamics for proper g-colorings under the condition ¢ > 2A, where A denotes the maximum degree of
the graph. This threshold was later improved by Vigoda [Vig99], who showed that the flip dynamics
mixes in O (nlog n) time when ¢g > %A, which in turn implied an O (n?) mixing time for the standard
Glauber dynamics. More recently, the threshold has been further lowered to ¢ > 1.809A through a
sequence of advances [CDM*19, CV25].

Despite this progress, efficient local samplers have remained elusive for proper g-colorings, primarily
due to the lack of unconditional marginal bounds, as discussed earlier. Previously, as noted in [FGW*23,
Section 8], a major obstacle to designing a local sampler for g-colorings has been overcoming the
threshold g = Q(A?), which corresponds to Huber’s bounding chains [Hub98].

Our result overcomes this obstacle and provides the first local sampling algorithm for proper g-
colorings in the near-critical regime g = O(A).

Theorem 1.4 (local sampler for proper g-colorings). There exists an algorithm that, given a graph
G = (V, E) with maximum degree A > 1, an integer q satisfying

(4) g > 65A,

and a subset of vertices A C V, outputs a perfect sample X ~ up, where u denotes the uniform distribution
over all proper q-colorings of G, in expected time O (A%q - |A|).

Remark 1.5. If the local computation cost is relaxed to be sublinear in the size of the input graph, as
in the local computation algorithm (LCA) model, a better bound of g > 9A was obtained in [BRY20].
Specifically, given any subset of vertices A C V, their algorithm outputs an approximate sample X from
ua within ¢ total variation distance, in time O ((|V|/€)?-58A |A|). Their approach is based on simulating
distributed local Markov chains and is unlikely to yield a local sampler in the sense of Theorem 1.4.

1.2.3. Local algorithms for probabilistic inference. An important application of efficient local samplers
lies in their connection to local counting for self-reducible problems, where they directly yield efficient
algorithms for probabilistic inference. In the (Bayesian) probabilistic inference problem, the goal is
typically to estimate how the marginal probability of a specific vertex changes under certain condi-
tions or observations. This task is fundamental to many areas and is particularly well-motivated in
machine learning and statistics, where inference plays a central role in prediction, decision-making,
and learning [DL93, DL97].

For a partial configuration o € [g]” over a subset of vertices A C V with ux (o) > 0, and a vertex
v € V '\ A, the conditional marginal distribution u{ is defined as:
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Specifically, we obtain the following local algorithms for probabilistic inference in spin systems with
soft constraints and for proper g-colorings.

Theorem 1.6 (probabilistic inference in spin systems with soft constraints). There exists an algorithm
that, given access (as in Assumption 1) to a g-spin system S = (G, A, A) with Gibbs distribution u = uS
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satisfying Condition 1.1, and given a subset of vertices A C V, a partial configuration o € [g]" with
ua(o) > 0, avertexv € V\ A, and parameters ,6 € (0, 1), outputs an estimate i such that

Pr[Ve e [g]: (1-&)ud (c) < 47(c) < (1 + &) ()] 2 14,
in expected time O (e7261Aq? log q - |Al).

Theorem 1.7 (probabilistic inference for proper g-colorings). There exists an algorithm that, given a
graph G = (V, E) with maximum degree A and q > 65A, a partial proper q-coloring o € [q]” of a subset
of vertices A C V, a vertexv € V \ A, and parameters €,6 € (0, 1), outputs an estimate 1 such that

Pr[ve € [q] : (1 - e)uf (c) < 47(c) < (L+e)ud ()] = 1 -6,
where i denotes the uniform distribution over all proper g-colorings of G, in expected time O (=25 1A%g3|A|).

1.3. Technique overview. Previous works on local samplers include [AJ22] and [FGW*23], both of
which rely on unconditional marginal lower bounds, i.e., the local uniformity property. The work of
[AJ22] introduced a novel local sampler called “lazy depth-first search” (a.k.a. the A-J algorithm). To
sample the spin of a vertex according to its correct marginal distribution, the algorithm first draws a
random spin according to the unconditional marginal lower bounds, and with the remaining probability,
it recursively samples the spins of all neighboring vertices. The algorithm in [FGW*23] takes a different
approach, employing a backward deduction framework for Markov chains, referred to as “coupling
towards the past” (CTTP). Their method uses systematic Glauber dynamics combined with a grand
coupling based on unconditional marginal lower bounds, allowing the spin of a vertex to be inferred via
a convergent information-percolation process. Despite their differences, both approaches rely crucially
on unconditional marginal lower bounds (implied by local uniformity) to prevent excessive backtracking
and thus ensure the efficiency of the sampling procedure. For a more detailed comparison of the two
algorithms, we refer the reader to [FGW*23, Section 1.2].

We introduce key innovations that eliminate the reliance on local uniformity for local sampling.
While the high-level ideas are broadly applicable, we present our new local samplers within the coupling
towards the past (CTTP) framework for local Markov chains. Unlike the original CTTP algorithm of
[FGW*23], which depends on a default grand coupling derived from unconditional marginal lower
bounds, our approach introduces several new ideas to adapt the grand coupling, enabling efficient local
samplers without assuming unconditional marginal lower bounds.

To design local samplers for systems with soft constraints that lack local uniformity, we first generalize
the CTTP framework via an abstract notion of marginal sampling oracles: procedures that sample
from conditional marginal distributions given oracle access to the neighborhood configuration. This
abstraction allows each implementation of a marginal sampling oracle to correspond to a specific
simulation of Glauber dynamics — or more precisely, to a particular grand coupling of the chain. We
then implement the marginal sampling oracle via rejection sampling, which leverages the softness of
local constraints rather than relying on unconditional lower bounds on marginal probabilities. This
yields efficient local samplers for spin systems with soft constraints beyond local uniformity.

The case of truly repulsive spin systems is much more challenging, as no marginal lower bound exists.
Consequently, it is impossible to determine the outcome of an update at a given time with positive
probability without additional information. To address this, we further extend the CTTP framework to:

o allow partial information (rather than the full outcome) to be resolved at a given timestamp;
e allow the grand coupling strategy at timestamp ¢ to depend on earlier timestamps ¢’ < ft,
introducing adaptivity into the grand couplings.
Leveraging these new ideas, we obtain the first local sampler for g-colorings with ¢ = O(A) colors. We
note that similar ideas have appeared in Coupling From The Past (CFTP), which yields (global) perfect
samplers for g-colorings with ¢ = O(A) colors [Hub98, BC20, JSS21]. Our technical contributions
regarding g-colorings can thus be viewed as local counterparts of these CFTP-based global samplers.
For the analyses of our local samplers, correctness follows from the validity of the underlying grand
coupling in each construction. For efficiency, we employ different approaches for spin systems with
soft and hard constraints. In the case of spin systems with soft constraints, the algorithm’s behavior is

relatively straightforward: we demonstrate that it is stochastically dominated by a subcritical branching
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process, which directly implies its efficiency. In contrast, the g-coloring case exhibits more intricate
behavior, rendering the previous analysis inapplicable. To address this, we introduce a carefully designed
potential function that reflects the state of the algorithm and drops to zero upon termination. We prove
that this potential function evolves as a supermartingale with bounded differences throughout the
execution of the algorithm, thereby establishing efficiency.

1.4. Related topics. Our local sampler is built upon the Coupling Towards The Past (CTTP) framework
introduced in [FGW™*23], which bears resemblance to the celebrated Coupling From The Past (CFTP)
method by Propp and Wilson [PW96] for perfect sampling from Markov chains, as both approaches
utilize the idea of grand coupling. (See Section 1.4 of [FGW™*23] for a detailed comparison between
the two frameworks.) Notably, the CTTP framework is more restrictive than CFTP: an efficient local
sampler within the CTTP framework implies the existence of an efficient perfect sampler under CFTP,
but the converse does not hold. This asymmetry arises because CTTP aims to produce not only a perfect
sample but also a local one, whereas existing CFTP constructions typically rely on global knowledge in
the analysis [Hub98, BC20, JSS21].

The backward deduction of Markov chain states in the CTTP framework also bears resemblance
to the analysis of the cutoff phenomenon via the method of information percolation [LS16, LS17]. In
particular, [LS17] shows that Glauber dynamics for the ferromagnetic Ising model exhibits a cutoff
phenomenon in the near-critical regime g < 1 + ﬁ. Despite these structural similarities, the goals of
the two frameworks differ fundamentally: CTTP is designed for constructing local samplers, while the
information percolation approach is aimed at analyzing mixing times. Furthermore, our technique for
obtaining near-critical local samplers for the Ising model differs significantly from that of [LS17]: our
grand coupling at each time step is constructed using rejection sampling, whereas theirs is based on
discrete Fourier expansion. Additionally, the bounds we obtain are tighter than those in [LS17].

Our local sampler also falls into the category of providing local access to large random objects [BRY20,
BPR22, MSW22]. Given a g-spin system S = (G = (V, E), A4, A) and public random bits, our algorithm
can generate consistent samples X, such that X ~ y = u° upon multiple queries of any subset of
vertices A C V, using only a local number of probes for public random bits.

1.5. Organization. The paper is organized as follows:

e In Section 2, we introduce the necessary preliminaries.

e In Section 3, we present a generalized CTTP framework, with an abstract notion of “marginal
sampling oracles”, and show how to utilize this abstraction to yield local samplers beyond local
uniformity.

o In Section 4, we design a new marginal sampling oracle and apply it to obtain our local sampler
for spin systems with soft constraints, proving Theorems 1.2 and 1.6.

e In Section 5, we further extend the CTTP framework to design a local sampler for g-colorings,
proving Theorems 1.4 and 1.7.

e In Section 6, we summarize our contributions and outline potential future directions.

2. PRELIMINARIES

2.1. Markov chain basics. Let Q be a (finite) state space. Let (X;);7, be a Markov chain over the state
space Q with transition matrix P. A distribution 7 over Q is a stationary distribution of P if 1 = P.
The Markov chain P is irreducible if for any x, y € €, there exists a timestamp ¢ such that P (x, y) > 0.
The Markov chain P is aperiodic if for any x € Q, ged{t | P'(x,x) > 0} = 1. If the Markov chain P
is both irreducible and aperiodic, then it has a unique stationary distribution. The Markov chain P is
reversible with respect to the distribution 7 if the following detailed balance equation holds.

Vx,y €Q, m(x)P(x,y) = n(y)P(y,x),
which implies 7 is a stationary distribution of P. The mixing time of the Markov chain P is defined by
Ve >0, T(P,e)= Inax max{r | drv (P'(Xo,-),7) < &},
0€
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where the total variation distance is defined by

drv (P'(Xo, "), 7) & % DI (X0, ) = x(3)]-
yeQ

2.2. Systematic scan Glauber dynamics. The systematic scan Glauber dynamics is a generic way to
sample from Gibbs distributions defined by spin systems. Given a g-spin system S = (G = (V, E), 4, A).
Let n = |V| and assume an arbitrary ordering V = {vo,v1,...,v,-1}, and let T > 0 be some finite
integer, the T-step systematic scan Glauber dynamics P (T) = PS(T)
(1) starts with an arbitrary configuration X_7 € [¢]" satisfying u(X_r) > 0 at time ¢ = T
(2) ateach time -T <t <0,
(a) picks the vertex v = v;(;) wherei(z) = ¢ mod n,let X;(u) = X;_1(u) foreveryu € V\ {v};
(b) resample X;(v) from the marginal distribution uff”l on v conditioning on X,_; where

Veelql, mr (@ = V@ c (o) [ Ado.e).

e=(u,v)eE
Here, the first equality is due to the conditional independence property of Gibbs distributions.

The systematic scan Glauber dynamics is not a time-homogeneous Markov chain. However, by
bundling n consecutive updates together, we can obtain a time-homogeneous Markov chain, which is
aperiodic and reversible, which is sufficient for us to apply the following theorem.

Theorem 2.1 ((LPW17]). Let u be a distribution with support Q C [¢]V. Let (X:)[2,, denote the systematic
scan Glauber dynamics on p. If (X;);2, is irreducible over Q, it holds that

VXo € Q, thm drv (Xt,,u) =0.

3. COUPLING TOWARDS THE PAST WITHOUT MARGINAL LOWER BOUNDS

Our local sampler is based on the Coupling Towards The Past (CTTP) framework recently introduced
in [FGW*23], which constructs a local sampler by evaluating multiple spin states from stationary
Markov chains through backward deduction. Our framework generalizes the CTTP framework by
replacing the default grand coupling, which uses unconditional marginal lower bounds, with grand
couplings defined by arbitrary “marginal sampling oracles”. This generalization allows us to design a
specific marginal sampling oracle that leads to a local sampler beyond the regime of local uniformity.

3.1. Marginal sampling oracles. Before introducing the CTTP framework, we first define marginal
sampling oracles. Due to the conditional independence property of Gibbs distributions, to sample from
the (conditional) marginal distribution u¢ for a vertex v € V and a configuration o € [¢]"\", it suffices
to retrieve the spins of all neighbors, o(N(v)). A marginal sampling oracle generalizes this concept by
producing a marginal sample, given oracle access to the spin o (u) of each neighbor u € N(v).

Definition 3.1 (marginal sampling oracle). Let u be a distribution over [¢]". For a variable v € V, we
define Evaluateo(v) as a procedure that makes oracle queries to O(u), which consistently returns a
value ¢, € [g] for eachu € N(v).

We say that Evaluate?(v) is a marginal sampling oracle at v (with respect to p) if:

e for each o € [¢]N "), assuming O (u) consistently returns o (u) for each u € N(v), the output
of Evaluateo(v) is distributed exactly as .

Recall the definition of systematic scan Glauber dynamics #(7T') in Section 2.2. Using a marginal
sampling oracle, the systematic scan Glauber dynamics can be simulated as follows.

Definition 3.2 (simulation of systematic scan Glauber dynamics via a marginal sampling oracle). The
systematic scan Glauber dynamics P (T') with respect to y is simulated as:
(1) start with an arbitrary configuration X_r € [¢]" satisfying u(X_7) > 0 at time ¢t = —T;
(2) ateach time -T <t <0,
(a) pick the vertex v = v;(;) where i(t) =t mod n, let X;(u) = X;_1(u) for everyu € V' \ {v};
7



(b) let Evaluateo(v) be a marginal sampling oracle (w.r.t i) at v where the oracle accesses
O(u) are replaced with X;_; (u) for each u € N(v), update X, (v) « Evaluateo(v).

Remark 3.3 (grand coupling). In Definition 3.2, the only randomness involved is within the subroutine
Evaluate® (v). Notably, for any implementation of a marginal sampling oracle, Definition 3.2 specifies a
simulation of systematic scan Glauber dynamics, and implicitly defines a grand coupling that couples the
Markov chain across all possible initial configurations. To see this, consider pre-sampling all random
variables used within Evaluate® (vi(r)) for each timestamp 7, thereby defining the grand coupling.

3.2. Simulating stationary Markov chains using backward deduction. We present the CTTP
framework for constructing the local sampler, which is a backward deduction of the forward simulation
described in Definition 3.2 (or equivalently, the grand coupling constructed in Remark 3.3).

Consider the systematic scan Glauber dynamics running from the infinite past toward time 0, which
is the limiting process of P(T) as T — oo, denoted by (o). By Theorem 2.1, when P (7T) is irreducible,
the state Xy of this process is distributed exactly according to p. Our local sampler is then constructed
by resolving the outcome X((A), where A is the queried set of vertices. For any r < 0 and u € V, define
(5) pred, (u) = max{t’ | ' <1t,vi() = u}
as the last time, up to 7, that vertex u was updated. The local sampler is formally presented in Algorithm 1.

Algorithm 1: LocalSample(A; M)

Input: A g-spin system S = (G = (V, E), A, A), a subset of variables A C V.

Output: A random configuration X € [¢]".

Global variables: A mapping M : Z — [q] U {L}.

1 X — O, M —17%;
2 forall v € A do
3 L X (v) < Resolve(pred,(v); M);

4 return X;

Line 3 of Algorithm 1 utilizes a procedure Resolve, formally presented as Algorithm 2, which takes
as input a timestamp ¢ < 0, and determines the outcome of the update at time 7 of (o).
Algorithm 2: Resolve(t; M)
Input: A g-spin system S = (G = (V,E), A, A), a timestamp ¢ < 0.
Output: A random value x € [g].
Global variables: A mapping M : Z — [g] U {Ll}.
1 if M(t) #1 then return M (7); // check if the outcome is already resolved
2 M(t) « Evaluateo(vi(,)), with O(u) replaced by Resolve(pred, (u); M) for each u € N(v;(;));
3 return M (¢);

A global data structure M is maintained within Algorithm 1, storing the resolved values M (¢) for
updates at each time ¢. It is initialized as M =17 in Line 1. This data structure M is introduced to
facilitate memoization: the outcome of Resolve(?) is evaluated only once, ensuring consistency across
multiple calls for the same ¢. For simplicity, we omit explicit references to M and write LocalSample(A)
and Resolve(t) instead of LocalSample(A; M) and Resolve(t; M).

Line 2 of Algorithm 2 invokes a procedure Evaluateo(vi(t)), which is abstractly defined in Defini-

tion 3.1 but is not yet fully implemented. Recall that the purpose of Evaluateo(vi(t)) is to infer the value
to which the vertex v = v;(,) is updated in # (o) at time #, which is distributed as ui(”l(N(V) ) given
access to X,_1(N(v)). However, since Algorithm 2 implements a backward deduction (as opposed to a
forward simulation) of the chain, the neighborhood configuration X;_; (N(v)) at time 7 is not available
directly. To address this, the algorithm recursively applies Algorithm 2 to infer the last updated value
of each neighbor u € N(v) before time ¢ (as specified in Line 2 of Algorithm 2).

Formally, the subroutine Evaluate(#) must satisfy the following local correctness condition:

Condition 3.4 (local correctness of Evaluateo(v)). For each v € V, the procedure Evaluateo(v) isa
marginal sampling oracle at v, satisfying the requirement of Definition 3.1.
8



Recall that Algorithm 2 is designed to resolve the outcome of (o) at time 0. However, the limiting
process P (oo0) is well-defined only if P (T) is irreducible. Additionally, we note that Algorithm 2
does not necessarily terminate. Nonetheless, we provide a sufficient condition that ensures both the
irreducibility of $(T') and the termination of Algorithm 2.

Condition 3.5 (immediate termination of Evaluateo(v)). For eachv € V, let &, be the event that
Evaluate (v) terminates without making any calls to O. Then, the following must hold:

Pr[&,] > 0.
We now establish the correctness of Algorithm 1, assuming Conditions 3.4 and 3.5.

Lemma 3.6 (conditional correctness of Algorithm 1). Assume that Conditions 3.4 and 3.5 hold for
Evaluate® (v). Then, forany A C V, Algorithm 1 terminates with probability 1 and returns a random
value X € [q]" distributed according to yn upon termination.

Lemma 3.6 is proved later in Section 3.3. It guarantees the termination and correctness of Algorithm 1,
without addressing its efficiency. Next, we provide a sufficient condition for the efficiency of Algorithm 1.

Condition 3.7 (condition for fast termination of Evaluate® (v)). Let§ > 0 be a parameter. For each
v eV, and each o € [q]N") such that O(u) consistently returns o (u) for allu € N(v), let 7.¢ denote
the total number of calls to O(u) over allu € N(v). Then, the following holds:

E[7,7] <1-6.

We conclude this subsection with the following lemma, which establishes the efficiency of our local
sampler under the assumption of Condition 3.7. Notably, it provides an upper bound on the total number
of recursive Resolve calls, rather than simply counting the number of initial calls for each < 0.

Lemma 3.8 (conditional efficiency of Algorithm 1). Assuming Condition 3.7 holds, the expected total
number of calls to Resolve(t) within LocalSample(A) is O(|A]).

Proof. The introduction of the map M in Line 1 of Resolve(t) is for memoization and only reduces the
number of recursive calls. As a result, the expected running time of LocalSample(A) can be upper-
bounded by the sum of the expected running times of Resolve(pred,(v)) for each v € A. It remains to
show that the expected running time of Resolve(pred,(v)) is O(1) for eachv € V.

As the mapping M only reduces the number of recursive calls, the behavior of Resolve(pred,(v))
can be stochastically dominated by the following multitype Galton-Watson branching process:

e Start with a root node labeled with pred,(v) at depth 0.
e Foreachi=0,1,...: for all current leaves labeled with some timestamp ¢ at depth i:
— Perform an independent run of Resolve(t), and for each timestamp ¢’ < t such that
Resolve(?) is directly recursively called, add a new node labeled with ¢’ as a child of 7.

By Condition 3.7, for any timestamp ¢ < 0, the expected number of offspring of a node labeled ¢ is at
most 1 — §. Thus, applying the theory of branching processes, the expected number of nodes generated
by this process is at most ! = O(1). Therefore, the expected number of Resolve(t) calls within
LocalSample(A) is O(]Al]), completing the proof of the lemma. O

3.3. Conditional correctness of the local sampler. We will prove Lemma 3.6, which addresses the
conditional correctness of the local sampler (Algorithm 1). At a high level, the proof follows the same
structure of the proof in [FGW*23].

First, we need to establish some basic components.

Lemma 3.9. Assume that both Conditions 3.4 and 3.5 hold for EvaIuateO(v), then P(T) is irreducible.

Proof. Recall that in Condition 3.5, for any v € V and o € [¢]N ("), &J denotes the event that
Evaluate? (v) terminates without any calls to O, assuming that O (i) consistently returns o () for each

u € N(v). Forany v € V, let ¢, € [¢] be an arbitrary possible outcome of Evaluateo(v), conditioning
9



on &, happens. Note that such ¢, always exists by Condition 3.5. Then combining with Condition 3.4,
we have

(6) min  uJ (¢) > 0.

oe[g]NM)

Let 7 € [g]V be the constant configuration where 7(v) = ¢, for ¢ = pred(v). By (6) and the chain
rule, we see that u(7) > 0. Also following (6), any o € [g]" such that u(c) > 0 can reach 7 through
Glauber moves by changing some o (#) to 7(u) one at a time. Note that P (7)) is reversible, therefore,
any o € [¢]" such that u(o) > 0 can also be reached from 7 and hence P (7) is irreducible. |

For any finite T > 0, we introduce the following finite-time version of Algorithm 1, presented as
Algorithm 3, which locally resolves the final state Xy of P (T'). Note that the only difference between
Algorithms 1 and 3 is the different initialization of the map M.

Algorithm 3: LocalSample(A)

Input: a g-spin system S = (G = (V, E), 4, A), a subset of variables A C V

Output: A random configuration X € [¢]*

Global variables: amap M : Z — [q] U {L}

1 X —@,M(t) «— X_7(vi;)) foreacht < -T,M(t) <L foreacht > -T;
2 forall v € A do
3 L X (v) « Resolve(pred,(v));

4 return X;

We then have the following lemma.

Lemma 3.10. Assume that both Conditions 3.4 and 3.5 hold for Evaluateo(v). Then,

(1) LocalSample(A) terminates with probability 1;
(2) For any initial state X_r, it holds that Tlim drv (LocalSample(A), LocalSample,(A)) = 0.

Proof. We start with proving Item 1. It suffices to show the termination of Resolve(#y) for any 7y < 0.
Recall the event &, in Condition 3.5. For each t < 0, we similarly let & denote the event that
Evaluateo(vi(,)) within Resolve() terminates without making any calls to O. We also define the event:

B, : E happens forallt’ € [t —n+1,1].

We claim that if 8, happens for some ¢ < ¢, then no recursive calls to Resolve(#") would be incurred
for any t’ < t — n within LocalSample(A). For the sake of contradiction, assume that a maximum
t* <t — n exists such that Resolve(z*) is called. Ast* <t —n < ty, Resolve(t*) must be recursively
called directly within another instance of Resolve(#’) (through Evaluateo(vl-(tf))) such that t* < ¢’.
Note that by Algorithm 2, the fact that Evaluateo(vi(t)) only make recursive calls to Resolve(pred, (u))
for some u € N(v;(;)) and (5) we also have t* > ' — n. We then have two cases:

(1) " <t — n, this contradicts the maximality assumption for ¢*.

(2) Otherwiset’ > t—n. Byt <t—-nandt <t +nwehavet' € [t —n+1,¢]. Also, by the
assumption that 8, happens, we have &;» happens; therefore, Resolve(#') would have directly
terminated without incurring any recursive call. This also leads to a contradiction and thus
proves the claim.

Letp = mtin Pr [&;], then p > 0 by Condition 3.5. Note that by Condition 3.5, for any t < #y, we

have
t

Prig]= []| Pri&s]=(-p)">0,

t'=t-n+1

where the first equality is by &, only depends on the randomness of procedure Evaluate, therefore all
&, are independent.
10



For any L > 0, let &, be the event that there is a recursive call to Resolve(t*) where t* < 1ty — Ln. By
the claim above,

L-1
Pr[&E.] <Pr

0

L-1
(ﬁgto—jn)] = l_[ Pr [_'Bfo—jn] <(1-pt,
J J=0

where the equality is again due to independence of (&;);<s,. Consequently, with probability 1, there is
only a finite number of recursive calls, meaning that LocalSample(A) terminates with probability 1.
This establishes Item 1.

For any ¢ < 0, since Resolve(?) terminates with probability 1, its output distribution is well-defined.
Therefore, the output distribution of LocalSample(A) is well-defined. For any &€ > 0, we choose a
sufficiently large L such that (1 — p)* < &. For any T > Ln — ty, we couple LocalSample(A) with
LocalSample(A) by pre-sampling all random variables used in Evaluateo(vi(,)) within Resolve(?) for
each t < 0. Here by Condition 3.4, the coupling fails if and only if Resolve(#’) is recursively called
within LocalSample(A) for some ' < —T, that is, &7 happens. By the coupling lemma, we have

drv (LocalSample(A), LocalSample,(A)) < Pr[&r] < (1-p)E <&,

which proves Item 2 as we take T — oo. O

For any finite 7 > 0 and -7 < ¢ < 0, we let X7, be the state of X; in P (7). The following lemma
shows LocalSample indeed simulates P (7).

Lemma 3.11. Assume that Conditions 3.4 and 3.5 hold for Evaluate® (v). Then forany A C 'V, the value
returned by LocalSample,(A) is identically distributed as Xt,0(A).

Proof. We maximally couple the value returned by each Resolve () and X, (v;(;)) in P(T) foreacht < T
and claim that in this case, the value returned by each Resolve(?) is exactly the same as X;(v;(;)) in
P (T); hence the lemma holds by the definition of LocalSample; and (5).

We prove the claim by induction from time 7 to 0. For each -7 <t < 0, let v = v;(;) and consider
the value returned by Resolve(pred, (u)) for each u € N(v):

e If pred,(u) < =T, then by (5), the value of u is not updated up to time ¢ in P(7’), hence X, (u) =
X_71(u) and the value returned by Resolve(pred, (1)) is X_7(u) = X; (u) by the initialization of
M in Algorithm 3.

e Otherwise, =T < pred,(u) < t by (5) and u € N(v), so the value returned by Resolve(pred, (1))
is Xpred, (v) = X;(u) by the induction hypothesis. Hence by Line 2 of Algorithm 2 and Condi-

tion 3.4, both the distribution of Resolve(?) and X; (v;(;)) is pXi-1 N () and hence can be
perfectly coupled.

Hence, the claim holds, and the lemma is proved. O
We are now ready to prove Lemma 3.6.

Proof of Lemma 3.6. By Item 1 of Lemma 3.10, we have LocalSample(A) terminates with probabil-
ity 1 and its output distribution is well-defined. It remains to prove that the output distribution of
LocalSample(A) is exactly .

By Lemma 3.9, we have that P (T) is irreducible. Then, Theorem 2.1 implies that

(7) Am dry (kA Xr,0(A)) =0,
For any T > 0, by the triangle inequality, we have

(8) drv (pa, LocalSample(A)) <drv (ua, LocalSampler(A))
+ drvy (LocalSample(A), LocalSample,(A)) .
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Altogether, the theorem follows from

drv (ua, LocalSample(A))

(by (8) < liI;l sup drvy (ua, LocalSampler(A))
+ liITn sup dyv (LocalSample;(A), LocalSample(A))
(by Lemma 3.10) = liITnj:jp drv (pa, LocalSampler(A))
(by (8) < liITn sup drv (1, Xr,0(A)) + lirTn sup drv (X7,0(A), LocalSample, (A))
(by Lemma 3.11) = liITn_)S:jp drv (pa, X,0(AN))
by (1) = 0. 0

4. APPLICATION: A LOCAL SAMPLER FOR SPIN SYSTEMS WITH SOFT CONSTRAINTS

In this section, we construct a new marginal sampling oracle for g-spin systems with soft constraints.
We will use this oracle to build our local sampler and prove Theorems 1.2 and 1.6. Our construction
is inspired by a simple rejection sampling procedure for sampling from uJ, given the neighborhood
configuration o € [¢]"N (") for some v € V.

This rejection sampling procedure is described as follows:

(1) Propose a random value ¢ € [g] distributed according to A,;
(2) With probability [[  A.(o(u),c), accept the proposal and return c as the final outcome;

e=(u,v)eE
Otherwise, reject the proposal and go to Step (1).

Note that the well-definedness of the above procedure follows from Condition 1.1, which ensures
that all 2, and A, are normalized. Given a g-spin system S = (G = (V, E), 4, A), for any vertex v € V,
we can then define a marginal sampling oracle at v based on the rejection sampling procedure.

Algorithm 4: a marginal sampling oracle for g-spin systems with soft constraints
Input: A g-spin system S = (G = (V,E), A, A), avertex v € V.
Output: A value X € [¢g].
Oracle access: O(u) for each u € N(v).
1 Sample an infinite long sequence of i.i.d. tuples {(c;, (7 u)uen(v)) }1<i<eo Where each c; € [q] is
distributed as 4, and each r; ;, is chosen uniformly from [0, 1];
2 i «—min{i | Ve = (u,v) € E,riy < Ac(O(u),ci)};
3 return c;+;

We remark that in Line 2 of Algorithm 4, such an i* always exists because A, satisfies Condition 1.1.
We now present the following lemma.

Lemma 4.1. Suppose that the input q-spin system S satisfies Condition 1.1. Then, Algorithm 4 implements
a marginal sampling oracle at v.

Proof. Given a g-spin system S = (G = (V, E), 4, A), in Algorithm 4, for eachi > 1 and each u € N(v),
recall that each ¢; is chosen distributed as p € A, where p(x) o« 4, (x) and each r; , is independently
chosen uniformly from [0, 1]. Let D; be the event that

D;:Ve=(u,v) € E,riy < Ac(O(u),c;),
12



then for any x € [¢], note that O(u;) = o (u;) under assumption, we have
Pr[c; =x A Dy

Pr [D;]

A(x) T Ae(o(u),x)

e=(u,v)eE

= = py (x).
2 () TT Ac(o(u),c)

celq] e=(u,v)eE

Pric;=x| D] =

Let i* be the smallest index chosen in Line 2 of Algorithm 4, i.e., i* = min{i | D;}. the output of
Algorithm 4 follows the distribution of ¢;+ conditioning on 9;, concluding the proof of the lemma. O

The marginal sampling oracle in Algorithm 4 as originally designed would require a significant
number of oracle calls in Line 2, potentially violating the efficiency condition outlined in Condition 3.7.
The key optimization is to invoke the oracle O(u) only when necessary for each neighbor u € N(v),
rather than for every iteration in Algorithm 4. Formally, assuming Condition 1.1 holds, in Line 2 of
Algorithm 4, if r; , < C, where C = C(A,6) = 1— %, then the inequality r; , < A.(O(u), ¢;) will hold
true regardless of the value of O(u). This is because the term C is chosen such that r; ,, is sufficiently
small to ensure success in the comparison without needing the actual value of O(u). Consequently,
it becomes unnecessary to call O(u) when r; ,, < C. With this idea of optimization, we propose the
following implementation of Evaluate® (v), presented in Algorithm 5, which builds upon the above
idea to efficiently sample without violating the fast termination condition.

Algorithm 5: Evaluate© (v)

Input: A g-spin systems S = (G = (V,E), A, A), avertexv € V.

Output: A value ¢ € [¢q].

1 Sample an infinite long sequence of i.i.d. tuples {(c;, (7; u)ueN (v)) }1<i<co, Where each ¢; € [¢] is
distributed as A, and each r;, is chosen uniformly from [0, 1];

2 fori=1,2,...do

flag — 1;

for e = (u,v) € E do

L if r; ,, > C then

-

L if rjy > Ae(O(u), c;) then flag « 0;

7 | if flag=1 then return ¢;;

Remark 4.2 (principle of deferred decision). In Line 1 of Algorithm 5, we are required to sample an
infinitely long sequence {(c;, {ri u}ueN(v)) }1<i<eo. Obviously, it is not feasible to directly sample an
infinite number of random variables for implementation. Instead, we adopt the principle of deferred
decision: each ¢; and r; ,, is generated only when they are accessed in Lines 4 and 6 of Algorithm 5.

Next, we show that the marginal sampling oracle Evaluate? (v) in Algorithm 5 satisfies the conditions
for both correctness and efficiency.

Lemma 4.3. Suppose that the input g-spin system S satisfies Condition 1.1. Then, the marginal sampling
oracle Evaluate® (v) implemented as in Algorithm 5 satisfies both Condition 3.4 and Condition 3.5.

Proof. Condition 3.4 can be verified directly by Lemma 4.1 and comparing Algorithms 4 and 5.

For Condition 3.5, recall that &, is the event that Evaluate? (v) in Algorithm 5 terminates without
any calls to O. Note that &, occurs if and only if Algorithm 5 terminates within 1 round of the loop
at Line 2 and 1, < C holds for each u € N(v). Since c; and each r; ,, are independent, assuming the
g-spin system S satisfies Condition 1.1 with constant § > 0, we immediately have

Pr[&] > C" > 0.

It verifies that Evaluateo(v) satisfies Condition 3.5 assuming Condition 1.1 holds. O
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Lemma 4.4. Suppose that the input g-spin system S satisfies Condition 1.1. Then, the marginal sampling
oracle Evaluate® (v) implemented as in Algorithm 5 satisfies Condition 3.7.

Proof. Fix some v € V. Also fix some o € [¢]N(") and assume that O(u) returns o () within
Evaluate? (v). Within each round of the outer for loop at Line 2 of Algorithm 5, the expected total
number of oracle calls to O(u) for any u € N(v) is given by:

9) E [number of calls to O(-) in one iteration] = Z Ay (c) Z 1-0)].
celq] e=(u,v)eE

Let 77 be the number of executions of the outer for loop at Line 2 in Evaluate(v). Note that 17
corresponds exactly to the number of executions of Item 1 in the rejection sampling. Therefore,

1

(10) E[L7] = .
2 (/lv(C) I1 Ae(U(u),C))

celq] e=(u,v)eE

Note that the number of oracle calls in each iteration are i.i.d. random variables with finite mean.
Applying Wald’s equation, we have:
E [Tv‘r] =E [I”] - E [number of calls to O(+) in one iteration] .

v

It then follows from (9) and (10) that:

% (ﬂv(C) x (1-0)

] celq] e=(u,v)eE

celq] e=(u,v)eE

2 (A(e)-(1=C)-IN(W)])

celq]
3 (A(e)-CY)
celq]
) 2 (A©1-9)/2)
B 6 celq
(by C=1-5%) =Y LO1+0)/2)

celq]
<1.

2 (ﬂv(C) [1 Ae(U(u),C))

(by Condition 1.1)

It proves that Evaluate? (v) satisfies Condition 3.7 assuming Condition 1.1 holds. O
We are now ready to prove Theorems 1.2 and 1.6.

Proof of Theorem 1.2. We use Algorithm 1 as our local sampler, where the subroutine Evaluate® (v) is
implemented by Algorithm 5 (using the principle of deferred decision as explained in Remark 4.2).

Here, the correctness of sampling follows from Lemmas 3.6 and 4.3.

For efficiency, by Lemmas 3.8 and 4.4, we have that the expected number of Resolve calls is O (|A|).
Also, note that each outer loop either terminates directly or results in at least one call to Resolve.
Hence, the overall running time is bounded by A log g times the total number of Resolve calls, which is
O(]A|Alog g) in expectation. O

Proof of Theorem 1.6. Note that by the self-reducibility of spin systems with soft constraints (i.e., Condi-
tion 1.1 holds under arbitrary pinning), we have the uniform lower bound:

C(A, o)A
YveV,celq], yg(c)zgz—.
q 2q
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This ensures that the marginal probabilities uJ (x) are all bounded away from zero. Therefore, by
the Chernoff bound, for each x € Q,, the value u§ (x) can be estimated to within a multiplicative error
of (1 + &) with probability at least 0.9 using O(g/&?) approximate samples.

According to Theorem 1.2, each such sample can be generated in expected time O (|A|Alog q), where
we easily handle the conditioning in o~ by setting M (1) = o) whenever Resolve(?) is called for
some V;(;) € A, so the total expected cost to estimate all uJ (x) for x € Q, is bounded by

(11) o (|1\|q2 log qu_Q).

Applying Markov’s inequality, the probability that the total cost exceeds this bound is at most 0.1.
Therefore, by truncating the algorithm’s running time to (11), we obtain a bounded-cost algorithm
which, with probability at least 0.9 — 0.1 = 0.8, returns estimates of all u¢ (x) within a multiplicative
factor of (1 +¢&) forallx € Q,,.

Finally, to boost the success probability to at least 1 — §/g, we repeat this procedure independently
O(log(q/d)) times and take the median of the resulting estimates. This yields the desired algorithm
claimed in the theorem by applying Chernoff’s bound again. O

5. EXTENSION: A LOCAL SAMPLER FOR ¢-COLORINGS

In this section, we show how to extend our CTTP framework to design local samplers for a prototypical
spin system with truly repulsive hard constraints: the proper g-colorings.

A key challenge in applying the CTTP framework to problems with hard constraints lies in the absence
of unconditional marginal lower bounds. In the systematic scan Glauber dynamics P(T') = (X; ?:_T
for g-colorings, determining the outcome of an update at node v = v;(;) at time 7 requires knowledge of
the color set S;, defined as the set of colors assigned to the neighbors of v in the configuration oy:

(12) St ={X;e(u) |u e Nv)}.

To correctly perform the update at time 7, one needs to sample uniformly from [¢q] \ S;. However, if for
any neighbor u € N(v), the outcome of its most recent update occurring at time pred, («) is unknown,
then the update at time ¢ cannot be resolved with positive probability. In other words, the immediate
termination condition (Condition 3.5) does not hold without additional information.

To generate a uniform sample from the set [g] \ S;, we could use a rejection sampling procedure
similar to that described in the previous section: propose a color ¢ uniformly at random from [¢],
and accept it if ¢ ¢ S;. Since S; contains at most A colors, when ¢ > CA for some sufficiently large
constant C, this rejection sampling succeeds with constant probability. However, a key challenge
remains: determining whether ¢ € S, requires knowledge of X; (1) for each neighbor u € N(v), which
may lead to endless recursion.

The crucial observation is that for each neighbor u € N(v), at the time of its last update ¢’ = pred,,(¢),
the probability that X;-(u#) = c is at most m, which is bounded above by % under the assumption
g > 2A. This allows us to implement a probabilistic filter to test whether X, (u) # ¢ as follows:

e With probability 1 — %, we directly certify that X, (u) # c;
e With the remaining probability %, we first check whether ¢ € Sy
- If ¢ € Sy, we can immediately certify that X, (1) # c. This condition can be verified
recursively by invoking a similar procedure for each neighbor w € N(u);

— Otherwise, we set X,/ (1) = ¢ with probability %, and otherwise certify that X,/ (u) # c.

Observe that the filtering procedure terminates immediately with probability at least 1 — 421' When g
is sufficiently large, this high probability of immediate termination serves as the basis of the recursion,
allowing us to avoid infinite recursion. To fully implement this filtering process, two aspects remains to
be specified: what it means to “certify” that a color cannot appear at a given timestamp ¢, and how to
simulate a trial with an unknown success probability %. We briefly outline these below:

o To certify that a certain color cannot appear at timestamp #, we have an auxiliary mapping
L : Z — 2l49] maintained globally outside the recursion, where each L(¢) is initially set to [¢].
This data structure records the set of available colors at each timestamp. The color assigned at
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time ¢ is interpreted as being uniformly sampled from L(¢) \ S;. Thus, to certify that ¢ cannot
be the outcome of the update at time ¢, we simply remove ¢ from L().

o Although we cannot directly compute the probability % since S,/ is not explicitly known,
we can query the membership of certain colors in S,/ through recursive calls. This allows us

to employ a Bernoulli factory algorithm to simulate a Bernoulli trial with the correct success

probability %.

Remark 5.1 (adaptivity of the grand coupling). As noted in Remark 3.3, simulating the Markov chain
in this manner implicitly defines a grand coupling over all starting configurations. In the procedure
described above, this grand coupling is adaptive: the coupling decision at a given timestamp ¢ may
depend on the outcome of the coupling at an earlier time ' < ¢. This adaptivity is a crucial feature
of our local sampler for g-colorings. Later, we will show that it does not compromise the correctness
of the Coupling Towards The Past (CTTP) framework. We also note that similar adaptive strategies
have been employed in the design of several perfect sampling algorithms based on the Coupling From
The Past (CFTP) method [BC20, JSS21]. However, our strategy fundamentally differs from those in the
CFTP framework, due to the additional constraints imposed by local samplers.

5.1. The local sampler. We now formally present our local sampler for g-colorings. As discussed
above, our local sampler is built on the CTTP framework, with a key modification that allows partial
information whether an updated outcome equals some particular color to be obtained. The local sampler
relies on two core subroutines:
e Resolve(?), which takes as input a timestamp ¢ < 0, and returns the outcome of the update at
time ¢ (i.e., the color to which the vertex is updated);
e Check(t, ¢), which takes as input a timestamp ¢ < 0 as well as a color ¢ € [¢g], and determines
whether the outcome of the update at time ¢ equals c;

Our local sampler for g-colorings is formally described in Algorithm 6.

Algorithm 6: LocalSample(A; M, L)
Input: A g-coloring instance G = (V, E), a subset of variables A C V.
Output: A random configuration X € [¢]".
Global variables: Two mappings M : Z — [¢] U {L},L : Z — 2l4].
1 X —o,M—1% L « [q]%
2 forallv € A do
3 L X(v) < Resolve(pred,(v); M, L);

4 return X;

In Algorithm 6, two global mappings, M and L, are maintained for memoization to ensure the
consistency of the algorithm. Specifically, M () stores the resolved values of updates at each time ¢,
and L(t) stores the remaining set of available colors for unresolved updates at each time r.

We now formally present the two core procedures, Resolve(t) and Check(z, ¢), which underpin
our construction of the local sampler. Similar to the case of spin systems with soft constraints, these
procedures are recursively defined, making calls to themselves on earlier timestamps. To facilitate
their definition, we adopt a variant of the abstraction for local sampling procedures, resembling the
Evaluateo(v) introduced in Definition 3.1, extended to allow access to partial information.

Definition 5.2 (local sampling procedures with access to partial information). For each vertex v € V
and color ¢ € [¢], we define the procedures Evaluateo(v) and Evaluateo(v, ¢), which make oracle
queries to:
e O(u), which consistently returns a value c,, € [g] for each neighbor u € N(v);
e O(u, c), which consistently returns a binary value x,, . € {0,1} for eachu € N(v) and ¢ € [¢],
such that x,, . = 1 if and only if ¢, = c.
In addition, since local sampling steps require knowledge of the set of currently available colors, finite

slices of the global mapping L may be passed by reference to Evaluate® (v) and Evaluate® (v, c).
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We remark that Definition 5.2 differs from the marginal sampling oracles in Definition 3.1 as it imposes
no requirement on the distribution of the outcomes produced by Evaluateo(v) and Evaluateo(v, c).

The procedures Resolve(?) and Check(?, ¢) are detailed in Algorithms 7 and 8, respectively.

The procedure Resolve(?) first checks whether the update at time ¢ has already been resolved, and if
not, invokes Evaluate? (v) to resolve it, passing the list of available colors L(r) by reference. Similarly,
the procedure Check(z, c) performs a series of preliminary checks before invoking Evaluate? (v, c)
determine equality to c, also passing L(f) by reference and potentially updating L(t) at the end.

An important detail occurs in Lines 8 and 9 of Check(#, ¢): if the size of the list L(¢) falls below 50A,
the algorithm invokes Resolve(?) to fully resolve the outcome at time ¢ rather than merely checking
equality to c. This mechanism ensures that the list size |L(#)| remains above 50A whenever it is passed
to either EvaIuateO(v) or Evaluateo(v, ¢) during the algorithm’s execution, assuming g > 50A.

Algorithm 7: Resolve(t; M, L)
Input: A g-coloring instance G = (V, E), a timestamp ¢ € Z.
Output: A random configuration X € [¢]".
Global variables: Two mappings M : Z — [¢] U {L},L : Z — 2l4],
1 if M(¢) #L then return M (¢); // check if the outcome is already resolved
2 M(t) « EvaIuateO(v,-(,); L(1)), with
e O(u) replaced by Resolve(pred,(u); M, L) for each u € N(v;(;));
e O(u,c) replaced by Check(pred, (u),c; M, L) for eachu € N(vi());
3 return M (1);

Algorithm 8: Check(t,c; M, L)
Input: A g-coloring instance G = (V, E), a timestamp ¢ € Z, a color ¢ € [g].
Output: A binary value x € {0, 1}.
Global variables: Two mappings M : Z — [¢] U {1}, L : Z — 2l4].

1 if M(t) #1 then // check if the outcome is already resolved
2 if M(t) = c then
3 L return 1;
4 else
L return 0;
6 if ¢ ¢ L(¢) then // check if ¢ is already not available
7 Lreturn 0;
8 if |L(1)| < 50A then // resolve the full outcome instead when |L(7)| < 50A

9 L Resolve(t; M, L);
10 X EvaluateO(vi(t), c; L(1)), with
e O(u) replaced by Resolve(pred,(u); M, L) for each u € N(v;(;));
e O(u,c) replaced by Check(pred,(u),c; M, L) for each u € N(vi«));
11 if x =1 then
12 L M(1) « c;
13 else
14 L L(t) « L(t) \ {c};

15 return x;

We now present our specific construction of local sampling procedures for g-colorings. To fully
evaluate a specific outcome of the update and realize Evaluate? (v; L), we employ the strategy described

earlier. Let S = {O(u) | u € N(v)}. To obtain a uniform sample from L \ S, we repeatedly select a color
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¢ € L uniformly at random and check whether ¢ € S by querying the oracle O(u, c) for each u € N(v).
This procedure is detailed in Algorithm 9.

Algorithm 9: Evaluate? (v; L)
Input: A g-coloring instance G = (V, E), a variable v € V, and a list of available colors L C [q],
with the promise that |L| > 50A.
Output: A value ¢ € [q].
Oracle access: O(u) for each u € N(v) and O(u, ¢) for eachu € N(v) and ¢ € [¢].
Global variables: a list of available colors L C [g], with the promise that ¢ ¢ L and |L| > 50A.
1 while True do
choose ¢ € L uniformly at random;
if O(u,c) =0 foreachu € N(v) then
L return c;

L« L\{c}

W N

(5]

To determine whether the outcome equals a specific color ¢ and realize Evaluate® (v, c; L), we
leverage the observation that when the size of the available color list satisfies |L| > 2A > 2|S|, the
probability that a uniform sample from L \ S equals ¢ is small. This motivates the following strategy to
simulate a coin that always returns 0 when ¢ € S, and when ¢ ¢ S, returns 1 with probability 1/|L \ S|
and 0 otherwise:

e With probability 1 — m, return 0 directly;
e Otherwise:
- Ifc € S, return 0;
— Otherwise, return 0 with probability % and return 1 otherwise.

When the first step does not immediately return 0, we query O(u, c) for each u € N(v) to check whether

c € S.Ifc ¢ S, achallenge arises: the set S is unknown to the algorithm, so we cannot directly simulate

a coin with success probability % While one could retrieve S by querying O(u) for every neighbor

u € N(v), this incurs a prohibitive number of recursive calls. Fortunately, we can efficiently simulate a
|L\S]

coin with success probability Sz using the following procedure:

e Choose a color ¢ € L uniformly at random.
e Determine whether ¢ € S: query O(u,c) for all u € N(v); if any query returns 1, output 0;
otherwise, output 1.

. L\S . . L . |LI/2
Moreover, given access to such a ILA\S] -coin, we can simulate a coin with success probabilit IL12
L] p Y DS PY

solving an instance of the Bernoulli factory problem [VN51]. Specifically, we employ a Bernoulli factory

algorithm for division: given access to a coin with success probability p = %, we simulate a coin

with success probability %
Our complete procedure for checking whether the outcome equals a specific color ¢ is described in
[L\S]

Algorithm 10, while the subroutine for simulating a W—probabﬂity coin is described in Algorithm 11.

Remark 5.3 (implementation of the algorithm). Note that our local sampler for g-colorings (Algorithms
6-11) involves a considerable number of recursive calls. To implement this algorithm efficiently, all
recursive calls to Resolve(?) and Check(, ¢) are managed using a stack. At each step, the algorithm
pops the call at the top of the stack — either Resolve() or Check(z, ¢) — executes it, updates the values
of L(t) and M (¢) in the global data structure if needed, and pushes any new recursive calls onto the
stack. Since each call to Resolve(t) or Check(t, ¢) only recurses on strictly smaller timestamps ' < ¢,
the recursions will be executed correctly as above.

The Bernoulli factory for division used in Algorithm 10 is achieved by a combination of existing
constructions [NP05, Hub16, Mor21]. Here, we present its correctness and efficiency.
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Algorithm 10: Evaluateo(v, c; L)
Input: A g-coloring instance G = (V, E), a variable v € V, a color ¢ € [¢]
Output: A binary value x € {0, 1}.
Oracle access: O(u) for each u € N(v) and O(u, ¢) for eachu € N(v) and ¢ € [¢].
Global variables: a list of available colors L C [g], with the promise that ¢ ¢ L and |L| > 50A.
1 with probability 1 — m return 0;
2 forall u € N(v) do
3 L If O(u,c) = 1 return 0;

4 let C be an AL robability coin where S = {O(u | u € N(v)}, generated as in Algorithm 11;
L] P Yy g g
5 with probability % return 1, otherwise return 0, where the probability % is generated
using the Bernoulli factory algorithm for division [Mor21], given access to C.

Algorithm 11: access to an |L \ S|/|L|-probability coin

Input: A g-coloring instance G = (V, E), a variable v € V, a color ¢ € [¢]
Output: A binary value x € {0, 1}.
Oracle access: O(u) for each u € N(v) and O(u, ¢) for eachu € N(v) and ¢ € [¢].
Global variables: A list of available colors L C [¢].
1 choose ¢ € L uniformly at random;
2 forall u € N(v) do
3 L if O(u, cp) = 1 then return 0;

4 return 1;

Lemma 5.4 (correctness and efficiency of the Bernoulli factory algorithm). There is a Bernoulli factory
algorithm accessing a £-coin with the promise that % + ¢ < & <1 for some { > 0, terminates with
probability 1, returns 1 with probability % and returns 0 otherwise. Moreover, the expected number of

calls to the £-coin is at most 9.5& 11,

The proof of Lemma 5.4 will be presented in Appendix A, where we also present the explicit con-
struction of the Bernoulli factory algorithm for division.

5.2. Correctness of the local sampler. We now proceed to prove the correctness of the local sampler,
stated in Lemma 5.5. Here, we establish only the conditional correctness under the assumption that the
local sampler always terminates. The proof of termination, along with the efficiency analysis of the
algorithm, is presented in the next subsection.

Lemma 5.5 (conditional correctness of the local sampler for g-colorings). Suppose that the input q-
coloring instance G = (V, E) satisfies ¢ > 65A where A > 1 is the maximum degree of G. Forany A C 'V,
suppose that LocalSample(A) terminates almost surely, then the output X of LocalSample(A) follows the
law up, where u denotes the uniform distribution over all proper g-colorings of G.

To prove Lemma 5.5, we first establish the correctness of the local procedures Evaluate®(v; L) and
Evaluate® (v,c; L).

Lemma 5.6 (local correctness of Evaluate? (v; L) and Evaluate® (v, ¢; L)). Given as input a g-coloring
instance G = (V, E). For any vertexv € V, color ¢ € [q] and a list of available colors L C [q] satisfying
|L| > 50A where A > 1 is the maximum degree of G, assuming O(u) for eachu € N(v) and O(u, c) for
eachu € N(v) and c € [q] as specified in Definition 5.2 and let S = {O(u) | u € N(v)}:

(1) Evaluateo(v; L) returns a uniform sample from L \ S;
(2) Evaluate® (v, c; L):
o returns( ifc € §;
o returns 1 with probability ﬁ and 0 with probability 1 — ﬁ otherwise.
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Proof. For Evaluateo(v; L), by |L| = 50A, Lines 2-5 of Algorithm 9, and Definition 5.2, Evaluateo(v; L)
always returns a value from L \ S. Then Item 1 follows from the symmetry of all colors in L \ S.

It is direct that Algorithm 11 returns 0 when ¢ € S. Also, according to that |L| > 50A and the
correctness guarantee of the Bernoulli factory algorithm (Lemma 5.4), Algorithm 11 indeed returns 1
with probability ﬁ and 0 with the remaining probability when ¢ ¢ S. Item 2 then directly follows. O

Similar to the proof of correctness for our local sampler for spin systems with soft constraints, we
introduce a finite-time variant of Algorithm 6 for any finite 7 > 0, denoted as Algorithm 12. This
algorithm locally reconstructs the final state X of (7). Still, the only difference between Algorithms
6 and 12 lies in the initialization of the mapping M.

Algorithm 12: LocalSample;(A; M, L) (for g-colorings)
Input: a g-coloring instance G = (V, E), a subset of variables A C V
Output: A random configuration X € [¢]*
Global variables: Two mappings M : Z — [¢] U {L},L : Z — 2l4].
1 X — @,M(t) « X_7(vi()) foreacht < -T,M(t) «L foreacht > -T, L « [q]%;
2 forallv € A do
3 L X (v) < Resolve(pred,(v); M, L);

4 return X;

We then present the crucial lemma for the correctness of the finite-time version of the algorithm. For
any finite T > 0 and -7 <t < 0, we let X7 ; be the state of X; in P (T). The following lemma shows
LocalSample; indeed simulates #(T') for g-colorings.

Lemma 5.7. Suppose that the input g-coloring instance G = (V, E) satisfies ¢ > 50A where A > 1 is the
maximum degree of G. For any A C V, the value returned by LocalSample,(A) is identically distributed
as Xr,0(N).

Proof. We claim that after the initialization step (Line 1) of Algorithm 12, it is possible to couple the
randomness of the algorithm and the process (X;)_7<; <o in such a way that the following two invariants
hold for any T > 0:

(1) Whenever Check(t, ¢) is called for some timestamp —7 < t < 0 and some color ¢ € [g], the
outcome is 1 if and only if X; (v;(;)) = ¢, where we define X; = X_r forallr < -T;
(2) Whenever Resolve(t) is called for some timestamp —7 < ¢ < 0, its output is X; (v;(;)), where
again X; = X_r forallt < -T.
Once such a coupling is established, the lemma immediately follows.
We then verify the existence of this coupling by induction on the length of the process, 7.
The base case is when T = 0, and the invariants hold by construction due to the initialization of the
mapping M in Algorithm 6.
Assume the claim holds for some 7' — 1 > 0. Consider the case for T. We rely on two facts:
e The process (X;)_7<s<o forms a Markov chain.
e Any recursive call to Resolve(r) or Check(t, ¢) only involves timestamps ¢’ < t.

These ensure that we can apply the induction hypothesis to couple the randomness for all timestamps
strictly less than ¢ = 0.

We now extend the coupling to the timestamp 7 = 0. Let v = v; (), and let S = |J  Xo(Vi(pred, (0))

ueN (v)

i.e., S is the set of colors assigned to the neighbors of v in the configuration Xy. By the transition rule
of the Markov chain, the value X, (v) is then sampled uniformly from [¢] \ S.

Under the inductive coupling at times ¢ < 0, the oracle values O () returned in any call to Check(0, c)
or Resolve(0) are exactly Xo(Vvi(pred,, (0)))- Thus, we can extend the coupling to ¢ = 0 as follows.

Maintain a local list L', initially equal to [¢], and ensure that L’ and the global list L(0) used in the
algorithm remain synchronized throughout (meaning the invariant L’ = L(0) always holds):

e Whenever Resolve(0) is called:
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— If M(0) #.L, the output is deterministic and no further randomness needs to be coupled;
— Otherwise, by ¢ > 50A and Lines 8-9 of Check(z, ¢), we have |L(0)| > 50A. By Item 1 of
Lemma 5.6, we can couple the randomness so that the outcome of Resolve(0) is exactly
XO(Vi(predu(O)))~
e Whenever Check(0, ¢) is called for some ¢ € [¢]:
- If M(0) #L or ¢ ¢ L(0), the output is deterministic and no further randomness needs to be

coupled;
— Otherwise, if |[L(0)| < 50A, Resolve(0) is called instead, and this reduces to the case we
already proved;
— Otherwise we have |L(0)| > 50A. By Item 2 of Lemma 5.6, we can couple the randomness
so that:
# If Check(0, ¢) returns 1, let Xo(Vvi(pred, (0))) = ¢ (both happens with probability
ST = TEosT!

* Otherwise, remove ¢ from L’ (both happens with probability 1 — ﬁ =1- Wl)\m)
As c is also removed from L(0) in this case, L’ and L(0) stay the same.
This completes the construction of the coupling, thereby proving the lemma. O

Now, we are finally ready to prove Lemma 5.5.

Proof of Lemma 5.5. Forany T > 0, we couple the randomness of LocalSample(A) with LocalSample;(A)
by pre-sampling all random variables used within Resolve(z) and Check(?, ¢) for each ¢t < 0. Here, the
coupling fails if and only if recursion reaches some timestamp ¢’ < —T. Note that when LocalSample;(A)
terminates almost surely, the probability of any recursion within LocalSample,(A) reaching some
timestamp ¢’ < —T must tend to 0 as T tends to infinity, meaning the coupling above gives us

(13) TIEEO drv (LocalSample(A), LocalSample,(A)) = 0.

Note that when ¢ > A + 1, we have P (T) is irreducible and Theorem 2.1 implies that
(14) Jim dry (ua, Xr.0(A)) =0,
Therefore,

drv (ua, LocalSample(A))
(by triangle inequality) < limsup dry (ua, LocalSample;(A))

T—o0

+

lim sup dvy (LocalSample;(A), LocalSample(A))

T—o0

(by (13))

(by triangle inequality) < limsupdry (ua, X7,0(A)) +limsup dry (Xr,0(A), LocalSamples(A))
T—o

T—o0

lim sup dpv (ua, LocalSample;(A))

(
msup dry
(
(

(by Lemma 5.7)

lim sup drv (ua, X7,0(A))

T—oo
(by (14)) =0,

concluding the proof of the lemma. O

5.3. Efficiency of the local sampler. Now, we proceed to proving the efficiency of our local sampler
for g-colorings. Our proof is done by designing a carefully-chosen potential function that relates to the
state of the algorithm, and showing that such a potential function decays in expectation at each step as
the algorithm evolves.

Lemma 5.8 (efficiency of the local sampler for g-colorings). Suppose that the input g-coloring instance
G = (V,E) satisfiesq > 65A where A > 1 is the maximum degree of G. Then for any subset A C V,
LocalSample(A) terminates almost surely within expected time |A| - A%q.

Proof. Following the proof of Lemma 5.7, we can couple the randomness of the algorithm and (X;);<o
in such a way that the following two invariants hold:
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(1) Whenever Check(t, ¢) is called for some timestamp ¢ < 0, some color ¢ € [g] and terminates,
the outcome is 1 if and only if X; (v;(;)) = ¢;
(2) Whenever Resolve(t) is called for some timestamp ¢ < 0 and terminates, its output is X; (v;(s)).

Note that here (X;),;<q is viewed as the limiting process of (X;)_r<;<0 asT — co. Wheng > A+ 1,
the Markov chain P (T) is ergodic, and the distribution specified by (X;),<o projecting onto any finite
subset of timestamps is always well-defined.

We then strengthen the lemma and prove that under any realization of the outcome of updates
in (X;); <0, the desired result that for any A C V, LocalSample(A) terminates almost surely within
expected time |A| - A%2g always holds.

Note that the state I of the algorithm LocalSample(A) can be defined by:

o the state of the global data structures M and L, and
e the current stack of recursive calls to Resolve(t) and Check(z, ¢).

We introduce a potential function to track the state of the algorithm.

Definition 5.9 (potential function associated with the state of the algorithm). Let ® = ®(II) € R be
the potential function, defined as follows. Initially, ® = 0.

e For each distinct Resolve(?) call such that M(7) =1 in the current stack of the algorithm, update
D — D+ Cl A.

e For each distinct Check(t, ¢) call such that M (¢) =L and ¢ € L(#) in the current stack of the
algorithm, update ® « @ + C.

e For each t € Z such that M (¢) =L and there is currently no Resolve(t) call in the stack, update
O «— O+ C3- (65A — |L|); that is, add Cs to the potential function for each removed color in
the list of an yet undetermined timestamp.

Here, C1, Co, C3 are universal constants to be determined later in this proof.

At the start of the algorithm, for each v € A, the only call is Resolve(pred(v)). Thus, the potential
function is initially set to ® = |A| - C1 A, as given by Definition 5.9. We will show that ® contracts in
expectation throughout the algorithm’s execution.

Without loss of generality, we only consider active calls of the form:

e Resolve(r) such that M(t) =1;
e Check(t, c) such that M(t) =1 and ¢ € L(1),

as the remaining calls directly terminate by memoization, and we attribute the running time of such
calls to the procedure that incurred them. The algorithm terminates when there are no active Resolve(z)
or Check(z, ¢) calls remaining in the stack.

We also decompose the execution of the algorithm into steps, where in each step, we reveal certain
random choices made by the algorithm, and the order of these random choices may differ from the
execution order of the algorithm. We analyze the expected change of ® in several cases.

e Suppose the top of the stack is a Resolve(¢) call for some ¢ € Z such that M(z) =L1. This
call proceeds by calling Evaluate? (vi(r); L(t)). We define each iteration of the while loop in
Evaluateo(v,-(,); L(t)) as a single step, and we track the expected change in ® after each step.

Since |L| = |L(t)| = 50A at the beginning, and |S;| has size at most A, we always have |L| >
49A at the start of any iteration. Therefore, the condition in Line 3 of Evaluateo(vl-(t); L(1)) is
satisfied with probability at least %,

of iterations to be stochastically dominated by Geo(% .

Hence, in each step:
— A calls to Check(z, c) are added to the stack, increasing the potential function by C2A.
— With probability at least %, the Resolve(t) call is removed from the stack, decreasing the
potential function by C; A.
We remark that during these steps, the potential function is not affected by the change in the
size of L(t) as Resolve(?) is already in the stack of the algorithm.
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Therefore, the expected change in the potential function per step is at most:

49
CoA — — - C1A.
2 50 1
e Suppose the top of the stack is a Check(¢, ¢) call for some ¢ € Z and ¢ € [g] such that M (¢) =L

and ¢ € L(1).
— If |L(#)| = 50A, then the Check(r, ¢) call is removed from the stack, decreasing the potential
function by Cs.

# If there currently is a Resolve(?) call in the stack, then the total change in the potential
function is simply —Cs.

* Otherwise, a new Resolve(t) call is added to the stack, increasing the potential function
by C1A. Additionally, since the removed color in the list L(#) no longer contributes to
the potential function when this new Resolve(?) call is added, the potential function
further decreases by C3 - (65A — 50A) = 15A - C3. Therefore, the total change in the
potential function is:

CiA - Cy —15A - Cs.

— Otherwise, we assume M(t) #L1,c € L(t) and that |L(¢)| > 50A. This call proceeds by
calling Evaluateo(v,-(,), ¢; L(t)). According to Evaluateo(v,-(,), c;L(1)):

* With probability 1 — % >1- 25%’ Evaluateo(vi(t), ¢; L(t)) directly terminates and
returns 0. In this case, the Check(z, ¢) call is removed from the stack, decreasing the
potential function by Ca. Also, due to Line 14 of Check(t, ¢), ¢ is removed from L(¢),
increasing the potential function by at most Cs3. Hence, in this case, the change in the
potential function is at most C3 — Ca.

* With probability |2T| < %LA, Evaluateo(vi(t), c; L(t)) first adds at most A recursive
calls of the form Check(#’, ¢”), then uses a Bernoulli factory algorithm for division to
return 1 with probability % accessing Algorithm 11 as an |L \ S,|/|L|-probability
coin, where S; is defined in (12). Note that after fixing the realization of (X;);<o, the
outcome of Algorithm 11 is solely determined by Line 1, which are clearly independent
of the randomness within recursive calls to Line 1. Therefore, we can first determine
the randomness within this Bernoulli factory algorithm and consider this as a step.
According to Lemma 5.4, the expected number of calls to Algorithm 11 is at most 21.
Each such call may in turn generate up to A recursive calls of the form Check(?’, ¢’),
with each recursive call contributing at most C5 to the potential function. At the same
time, the original Check(, ¢) call is removed from the stack, decreasing the potential
function by Cs; and, due to Line 14, the color ¢ is removed from L(¢), increasing the
potential function by Cs. Thus, the total expected change in the potential function in

this case is at most:
(22A = 1)Cs + Cs.

Moreover, since at most Ag distinct recursive calls of the form Check(#’, ¢’) can be
generated where ¢’ = pred,, (¢) for some u € N(v;(;)), the maximum change in the
potential function is at most:
(Aq - 1)C2 + C3.

Summarizing, in this case, the expected change in the potential function per step is at most:
1 1 3Cs
1-—1-(C3-Co)+ — - ((22A-1)Cy+ C3) = C3 — —.

( 25A) (C3—C)+ 5+ - (( )C2+C3) =C3— -

We then set the constants as follows:
Ci1 =30, Cy=25 C3=2.

In this case, it is easy to see that the expected change of the potential function after each step is at
most —1. Let ®g, @1, ... be the random sequence of the potential function after the i-th step of the
23



algorithm. Define ¥; = ®; + i for each i > 0. By the previous analysis, we have {¥;};>o forms a
supermartingale with each absolute increment |¥;; — ¥;| upper bounded by some K = poly(g, A). Let
T=min{i > 0| ®; =0} = min{i > 0 | ¥; =i} be a stopping time. By the Azuma-Hoeftding inequality,
we have for each fixed € > 0,

-30&2|AlA
Pr[7 > (1+¢&)30|A]-A] < Pr [‘I‘(1+8)30|A|.A > ¥y + 30e|A| -A] < exp (A) ,

(1+&)K?
from which we can conclude that E [7] < oo, allowing us to apply Doob’s optional stopping theorem:
30[Al-A=E[¥] 2 E[¥:] =E[7],

meaning that the algorithm executes at most 30|A| - A steps in expectation. Consequently, by Lemma 5.4,
the expected running time of the algorithm is bounded by O (|A| - Ag?). O

Lemmas 5.6 and 5.8 together establish Theorem 1.4. For Theorem 1.7, observe that all algorithms and
proofs in this section naturally extend to the setting of list colorings, where each vertex v € V has its
own color list Q,, satisfying |Q,| > 65A. By applying the same argument as in the proof of Theorem 1.6,
Theorem 1.7 follows.

6. CoNcLUSIONS AND OPEN PROBLEMS

In this paper, we design new local samplers that go beyond the use of the local uniformity property
by generalizing and refining the framework of backward deduction of Markov chains, i.e., the “Coupling
Towards The Past” (CTTP) method. Specifically, we design the first local samplers for both spin systems
with soft constraints in near-critical regimes, and uniform g-coloring under the near-critical condition
of g = O(A) where A is the maximum degree of the graph. The proposed local samplers are perfect,
achieve near-linear runtime, and admit direct applications to local algorithms for probabilistic inference
within the same parameter regimes.

We leave the following open problems and directions for future work:

e While our local sampler performs well in near-critical regimes for spin systems using backward
deduction of Glauber dynamics, it has been shown that forward simulation of Glauber dynamics
mixes rapidly for the Ising model up to the uniqueness threshold. Can we improve the analysis
of our current algorithm, design new local samplers that are efficient up to this critical threshold,
or prove a lower bound showing that this is intractable for local samplers?

e Both the CTTP (Coupling Towards The Past) and the CFTP (Coupling From The Past) approaches
are based on grand coupling and can yield perfect sampling algorithms. However, the local
sampler via CTTP requires a more restrictive grand coupling that admits a local implementation.
For g-colorings, we show that CTTP with such a local grand coupling can indeed achieve the
q = O(A) threshold; in particular, we establish ¢ > 65A. In contrast, the best known result for
CFTP with a global grand coupling is g > (% + 0(1))A, as achieved in [JSS21], which attains
a better constant factor. This raises a natural question: can one obtain a local sampler that
matches or even surpasses the global grand coupling threshold?

e Local samplers, as introduced in [AJ22, FGW*23], have found a wide range of applications,
as discussed in the introduction. Our work further shows that local samplers can also imply
efficient local algorithms for probabilistic inference. We hope to see more applications of local
samplers, particularly in the design of distributed and parallel algorithms.
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APPENDIX A. BERNOULLI FACTORY METHOD FOR SIMULATING PROBABILITY

In this section, we explicitly provide the construction of the Bernoulli factory for division, and
formally prove Lemma 5.4.

For ¢ € [0, 1] we denote by O¢ a coin (or oracle) that returns 1 (heads) with probability &, and 0
(tails) with probability 1 — &, independently on each call.

Our construction of the Bernoulli factory for division is based on the method from [Mor21], which
in turn builds on the subtraction Bernoulli factory from [NP05]. That construction is itself based on a
linear Bernoulli factory, for which we adopt the implementation from [Hub16].

We first introduce the linear Bernoulli factory, which transforms O to Oc¢ for a C > 1 with the
promise that C¢ < 1. We adopt the construction of linear Bernoulli factory in [Hub16] described in
Algorithm 13. Its correctness and efficiency is guaranteed as follows.

Algorithm 13: LinearBF(O, C, {)[Hub16]

Input: a coin O = O¢ with unknown &, C > 1 and a slack ¢ > 0, with promise that C¢ < 1 - ¢;
Output: a random value from Oc¢;
k— 4.6/, «— min{Z,0.644},i « 1;

[

2 repeat
3 repeat
4 draw B «— O, G « Geo (%)
// G is drawn according to geometric distribution with parameter %

i—i-1+(1-B)G;

untili =0 ori > k;

if i > k then

draw R « Bernoulli ((1 +§/2)_i);
C—C(1+¢/2),¢ « ]2,k « 2k;

10 untili =0 or R = 0;
11 return 1 [i = 0];

o & N & wu

Proposition A.1 ([Hub16, Theorem 1]). Given access to a coin O, given as input C > 1 and { > 0, with
promise that C¢ < 1 - ¢, LinearBF(O, C, {) terminates with probability 1 and returns a draw of Oc¢.
Moreover, the expected number of calls to O is at most 9.5C{_1.

Building upon the linear Bernoulli factory, a subtraction Bernoulli factory SubtractBF(O¢,, Og,, {)
was proposed in [NP05]. It transforms two coins O, and Og,—under the promise that & — &2 > ¢ >
0—into a new coin Og, _¢,.

We implement this procedure using the linear Bernoulli factory defined above:

e SubtractBF (O«fp O§2, {) =1 - LinearBF (0(1_§1+§2)/2, 2, {),

where the coin O(1_¢ +¢,)/2 is realized using O1/2, O¢,, and Og, as follows: if O/ = 1, return
1 — Og,; otherwise, return Og, .

The correctness and efficiency of this procedure is guaranteed as follows.

Corollary A.2 (c.f. [NP05, Proposition 14, (iv)]). Given access to two coins Og, and Og,, and given as
input { > 0, with promise that & — £ > £, SubtractBF (Og,, Og,, {) terminates with probability 1 and
returns a draw of O, _ ¢,. Moreover, the expected number of call to Og and Oy, is at most 9.5 1 each.

Now we can formally give the construction of the Bernoulli factory for division in [Mor21],
BernoulliDivision(O¢, p, {), which transforms a coin O with the promise that £ — p > ( into a
new coin O, . The construction is given as follows [Mor21, Algorithm 9].

Repeat the following until a value is returned:

e If a draw / from Oy 3 is 1: return 1 with probability p.

e Otherwise, return 0 if a draw from O¢_, returns 1,
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where O¢_ ), is implemented using SubtractBF (O, O, {).

The correctness and efficiency of this procedure is guaranteed as follows, which directly proves
Lemma 5.4.

Corollary A.3 (c.f. [Mor21, Proposition 2.24]). Given access to a coin O¢, and given as input0 < p <
1,¢ > 0, with promise that ¢ — p > ¢, BernoulliDivision (O, p, {) terminates with probability 1 and
returns a draw of O,/ . Moreover, the expected number of calls to O is at most 9.5¢7 1L,
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