
LOCAL GIBBS SAMPLING BEYOND LOCAL UNIFORMITY

HONGYANG LIU, CHUNYANG WANG, YITONG YIN

Abstract. Local samplers are algorithms that generate random samples based on local queries to high-

dimensional distributions, ensuring the samples follow the correct induced distributions while maintaining

time complexity that scales locally with the query size. These samplers have broad applications, including

deterministic approximate counting [HWY23, FGW
+

23], sampling from infinite or high-dimensional

Gibbs distributions [AJ22, HWY22], and providing local access to large random objects [BRY20].

In this work, we present local samplers for Gibbs distributions of spin systems. Specifically, we design

linear-time local samplers for:

• spin systems with soft constraints, including the first local sampler for near-critical Ising models;

• truly repulsive spin systems, represented by the first local sampler for uniform proper 𝑞-colorings,

with 𝑞 = 𝑂 (Δ) colors on graphs with maximum degree Δ.

These local samplers are efficient beyond the “local uniformity” threshold, which imposes unconditional

marginal lower bounds — a key assumption required by all prior local samplers. Our results show that, in

general, local sampling is not significantly harder than global sampling for spin systems. As an application,

our results also imply local algorithms for probabilistic inference in the same near-critical regimes.

1. Introduction

Spin systems, which originated in statistical physics, are stochastic models characterized by local

interactions. These models have not only advanced our understanding of physical phenomena, such

as phase transitions and criticality, but have also become central to machine learning and theoretical

computer science, particularly in the study of sampling and inference problems in complex distributions.

Let 𝑞 ≥ 2 be an integer. A 𝑞-spin system S = (𝐺 = (𝑉, 𝐸), 𝝀 = (𝜆𝑣)𝑣∈𝑉 , 𝑨 = (𝐴𝑒)𝑒∈𝐸) is defined on

a finite graph 𝐺 = (𝑉, 𝐸), where each vertex is associated with an external field 𝜆𝑣 ∈ R𝑞≥0, and each

edge 𝑒 ∈ 𝐸 is associated with an interaction matrix 𝐴𝑒 ∈ R𝑞×𝑞≥0 . A configuration 𝜎 ∈ [𝑞]𝑉 assigns a

spin state from [𝑞] to each vertex 𝑣 ∈ 𝑉 .

The Gibbs distribution 𝜇 = 𝜇S over all configurations 𝜎 ∈ [𝑞]𝑉 is given by:

𝜇(𝜎) ≜ 𝑤(𝜎)
𝑍

, 𝑤(𝜎) ≜
∏
𝑣∈𝑉

𝜆𝑣 (𝜎(𝑣))
∏

𝑒=(𝑢,𝑣) ∈𝐸
𝐴𝑒 (𝜎(𝑢), 𝜎(𝑣)),

where the the normalizing factor 𝑍 =
∑

𝜎∈[𝑞]𝑉 𝑤(𝜎) is the partition function.

A central question in the study of spin systems is sampling from their associated Gibbs distributions.

For well-known models such as the hardcore model and the Ising model, a critical threshold determined

by the system’s parameters has been identified, beyond which sampling from the Gibbs distribution

becomes NP-hard [SS14, GŠV16]. Recent breakthroughs have shown that the Glauber dynamics, a

widely-used Markov chain, mixes rapidly up to these critical thresholds for specific spin systems,

including the hardcore model and the Ising model [ALO20, CLV20, CLV21, CFYZ21, AJK
+
22, CE22,

CFYZ22]. These results provide a comprehensive characterization of the computational phase transition

inherent in sampling from the Gibbs distributions of such spin systems.

1.1. Local sampling and local uniformity. Recent research has increasingly focused on local sam-

pling techniques for high-dimensional Gibbs distributions [AJ22, AGPP23, FGW
+
23]. Rather than

directly drawing a global sample from the Gibbs distribution 𝜇, such algorithms aim to answer on-

demand local queries on a small subset of vertices Λ ⊆ 𝑉 , and returns a sample approximately distributed

according to the marginal distribution of 𝜇 induced on Λ, at a local cost that depends only on the size

State Key Laboratory for Novel Software Technology, New Cornerstone Science Laboratory, Nanjing Uni-

versity, 163 Xianlin Avenue, Nanjing, Jiangsu Province, 210023, China. E-mail: liuhongyang@smail.nju.edu.cn,

wcysai@smail.nju.edu.cn, yinyt@nju.edu.cn

1

ar
X

iv
:2

50
2.

10
79

5v
2

 [
cs

.D
S]

 1
3

O
ct

 2
02

5

https://arxiv.org/abs/2502.10795v2

of the query set |Λ| (and not on the total size |𝑉 | of the spin system). For a subset of vertices Λ ⊆ 𝑉 , the

marginal distribution 𝜇Λ is defined as:

∀𝜏 ∈ [𝑞]Λ, 𝜇Λ(𝜏) ≜
∑︁

𝜎∈[𝑞]𝑉 :𝜎Λ=𝜏

𝜇(𝜎).

Then, the local sampling problem is defined as follows:

The local sampling problem

Input: A spin system S = (𝐺, 𝝀, 𝑨), where 𝐺 = (𝑉, 𝐸), and a subset of vertices Λ ⊆ 𝑉 ;

Goal: Generate a sample 𝑋 ∼ 𝜇Λ in time that scales near-linearly in |Λ|.

Local sampling can, of course, solve global sampling by simply querying all vertices or using the

auto-regressive sampler for self-reducible problems, as in [AJ22, HWY22]. Beyond this, these local

samplers offer the ability to “scale down” the sampling process, addressing the challenge of providing

local access to large random objects [BRY20], where sublinear computational costs are required for

sublinear-size queries. For applications, efficient local samplers directly imply efficient algorithms

for probabilistic inference for self-reducible problems, and can possibly lead to efficient approximate

counting algorithms [HWY23, FGW
+
23, AFF

+
24, AFG

+
25].

However, existing local samplers for spin systems [AJ22, AGPP23, FGW
+
23] rely on the assumption

of unconditional marginal lower bounds, also known as the “local uniformity” property. This assumption

requires that the marginal distribution of each vertex remains nearly identical across all neighboring

configurations, which may be excessively restrictive for various problems.

Consider, for example, the Ising model with edge activity 𝛽 > 0 and an arbitrary external field.

The Ising model, introduced by Ising and Lenz [Isi25], has been extensively studied in various fields.

Formally, it is a 2-spin system with 𝐴𝑒 =
©­«
𝛽 1

1 𝛽

ª®¬ at each edge 𝑒 ∈ 𝐸 and arbitrary 𝜆𝑣 at each 𝑣 ∈ 𝑉 .

Sampling from its Gibbs distribution can be achieved through Glauber dynamics, which mixes rapidly

under the well-known “uniqueness condition”:

(1) 𝛽 ∈
(
Δ − 2
Δ

,
Δ

Δ − 2

)
,

where Δ is the maximum degree of the underlying graph. Beyond this, either Glauber dynamics becomes

torpidly mixing, or the sampling problem itself becomes intractable. In contrast, the requirement of

unconditional marginal lower bounds for such models imposes a significantly stricter condition:

𝛽 ∈
((
Δ − 1
Δ + 1

)1/Δ
,

(
Δ + 1
Δ − 1

)1/Δ)
=

(
1 − 1

Θ(Δ2) , 1 +
1

Θ(Δ2)

)
.(2)

Much greater challenges arise in “truly repulsive” spin systems — most notably, in sampling uniform

proper 𝑞-colorings. Given a graph 𝐺 = (𝑉, 𝐸), a proper 𝑞-coloring is an assignment 𝜎 : 𝑉 → [𝑞] such

that 𝜎(𝑢) ≠ 𝜎(𝑣) for all (𝑢, 𝑣) ∈ 𝐸 . This is one of the most extensively studied sampling problems.

(Global) sampling algorithms have gradually lowered the tractability threshold for proper 𝑞-colorings

to 𝑞 > 1.809Δ [Vig99, CDM
+
19, CV25], where Δ is the maximum degree of the graph, while the

uniqueness condition for proper 𝑞-colorings is given by 𝑞 ≥ Δ + 1. On the other hand, the truly

repulsive nature of proper colorings precludes local uniformity: the marginal probability of a color

at a vertex can drop to zero when a neighbor is assigned that color, so any method that relies on an

unconditional lower bound on the marginals fails. Consequently, to this day, no local sampler is known

for uniform proper 𝑞-colorings.

This stark discrepancy raises a fundamental question: Do local samplers exist for such models in

near-critical regimes? Or does local sampling inherently require a significantly more stringent critical

condition compared to global sampling?

2

1.2. Our results. In this paper, we address the aforementioned open question by designing new

linear-time local samplers for two fundamental classes of spin systems under near-critical conditions:

models with soft constraints, including the Ising model, and repulsive models, represented by proper

𝑞-colorings, showing that local sampling remains feasible near the global threshold for these models.

Our main contributions, both the first of their kind, are:

• a local sampler for the Ising model in near-critical regimes;

• a local sampler for uniform proper 𝑞-colorings using 𝑞 = 𝑂 (Δ) colors.

Specifically, our local samplers assume the following natural access model for spin systems.

Assumption 1 (probe access). Let S = (𝐺 = (𝑉, 𝐸), 𝝀, 𝑨) be a 𝑞-spin system. We assume:

• For each 𝑣 ∈ 𝑉 , each neighbor 𝑢 ∈ 𝑁 (𝑣) can be accessed in 𝑂 (1) time.

• Each entry in every 𝜆𝑣 and 𝐴𝑒 can be retrieved in 𝑂 (1) time.

These can be achieved by storing 𝐺 as an adjacency list and representing 𝜆𝑣 and 𝐴𝑒 as arrays.

1.2.1. Local sampler for spin systems with soft constraints. Our first general result provides a linear-time

local sampler for 𝑞-spin systems that satisfy the following sufficient condition.

Condition 1.1 (tractable regime for spin systems with soft constraints). Let 𝛿 > 0 be a parameter, and
S = (𝐺, 𝝀, 𝑨) be a 𝑞-spin system on a graph 𝐺 = (𝑉, 𝐸) with maximum degree Δ ≥ 1. The following
condition holds:

• (Normalized) All 𝜆𝑣 and 𝐴𝑒 are normalized, i.e.,

∀𝑣 ∈ 𝑉,
∑︁
𝑐∈[𝑞]

𝜆𝑣 (𝑐) = 1 and ∀𝑒 ∈ 𝐸, max
𝑖, 𝑗∈[𝑞]

𝐴𝑒 (𝑖, 𝑗) = 1.

This normalization can be enforced without altering the Gibbs distribution.
• (Soft constraints) For every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 and every pair of spin values 𝑐1, 𝑐2 ∈ [𝑞],

𝐴𝑒 (𝑐1, 𝑐2) ≥ 𝐶 (Δ, 𝛿) ≜ 1 − 1 − 𝛿
2Δ

.

The following theorem presents our local sampler for spin systems with soft constraints.

Theorem 1.2 (local sampler for spin systems with soft constraints). There exists an algorithm that,
given access (as in Assumption 1) to a 𝑞-spin system S = (𝐺, 𝝀, 𝑨) satisfying Condition 1.1, with Gibbs
distribution 𝜇 = 𝜇S , and given a subset of vertices Λ ⊆ 𝑉 , outputs a perfect sample 𝑋 ∼ 𝜇Λ in expected
time 𝑂 (Δ log 𝑞 · |Λ|).

The local sampler in Theorem 1.2 is perfect and terminates in time linear in |Λ| in expectation.

Next, we apply Theorem 1.2 to one of the most important spin systems with soft constraints: the

Ising model. Recall the definition of the Ising model, which is a 2-spin system with an interaction matrix

𝐴𝑒 =
©­«
𝛽 1

1 𝛽

ª®¬
at each edge 𝑒 ∈ 𝐸 and an arbitrary external field 𝜆𝑣 at each vertex 𝑣 ∈ 𝑉 . Note that this standard

definition of the Ising model does not satisfy the normalization condition in Condition 1.1 when 𝛽 > 1.

However, we can transform such a (ferromagnetic) Ising model to satisfy this normalization condition,

by using 𝐴𝑒/𝛽 as the interaction matrix, without altering its Gibbs distribution.

Applying Theorem 1.2 gives the following corollary, where Assumption 1 is implicitly assumed.

Corollary 1.3 (local Ising sampler). There exists an algorithm that, given a Ising model with Gibbs
distribution 𝜇 on a graph 𝐺 = (𝑉, 𝐸) with maximum degree Δ ≥ 1, arbitrary external fields 𝜆𝑣 at each
𝑣 ∈ 𝑉 , and edge activity 𝛽 satisfying

(3) 𝛽 ∈
(
Δ − 0.5

Δ
,

Δ

Δ − 0.5

)
,

and given a subset of vertices Λ ⊆ 𝑉 , outputs a perfect sample 𝑋 ∼ 𝜇Λ in expected time 𝑂 (Δ · |Λ|).
3

The condition in (3) falls within the same regime of

(
1 − Θ

(
1
Δ

)
, 1 + Θ

(
1
Δ

))
as the uniqueness condition

in (1), substantially improving upon the local uniformity condition in (2).

1.2.2. Local sampler for proper 𝑞-colorings. Our next result establishes a linear-time local sampler for

one of the most fundamental repulsive spin systems: the uniform proper 𝑞-coloring model. Given

a graph 𝐺 = (𝑉, 𝐸), a proper 𝑞-coloring is an assignment 𝜎 : 𝑉 → [𝑞] such that 𝜎(𝑢) ≠ 𝜎(𝑣) for

every edge (𝑢, 𝑣) ∈ 𝐸 . This classical combinatorial model can be viewed as a 𝑞-spin system with truly

repulsive hard constraints: the interaction matrix assigns zero weight to configurations where adjacent

vertices share the same color (i.e., zeros on the diagonal) and unit weight otherwise (i.e., ones off the

diagonal).

Uniform sampling of proper 𝑞-colorings has long been a central problem in the study of algorithmic

sampling and counting. In a seminal work, Jerrum [Jer95] established optimal mixing of the Glauber

dynamics for proper 𝑞-colorings under the condition 𝑞 > 2Δ, where Δ denotes the maximum degree of

the graph. This threshold was later improved by Vigoda [Vig99], who showed that the flip dynamics

mixes in 𝑂 (𝑛 log 𝑛) time when 𝑞 > 11
6 Δ, which in turn implied an 𝑂 (𝑛2) mixing time for the standard

Glauber dynamics. More recently, the threshold has been further lowered to 𝑞 > 1.809Δ through a

sequence of advances [CDM
+
19, CV25].

Despite this progress, efficient local samplers have remained elusive for proper 𝑞-colorings, primarily

due to the lack of unconditional marginal bounds, as discussed earlier. Previously, as noted in [FGW
+
23,

Section 8], a major obstacle to designing a local sampler for 𝑞-colorings has been overcoming the

threshold 𝑞 = Ω(Δ2), which corresponds to Huber’s bounding chains [Hub98].

Our result overcomes this obstacle and provides the first local sampling algorithm for proper 𝑞-

colorings in the near-critical regime 𝑞 = 𝑂 (Δ).

Theorem 1.4 (local sampler for proper 𝑞-colorings). There exists an algorithm that, given a graph
𝐺 = (𝑉, 𝐸) with maximum degree Δ ≥ 1, an integer 𝑞 satisfying

(4) 𝑞 ≥ 65Δ,

and a subset of vertices Λ ⊆ 𝑉 , outputs a perfect sample 𝑋 ∼ 𝜇Λ, where 𝜇 denotes the uniform distribution
over all proper 𝑞-colorings of 𝐺 , in expected time 𝑂

(
Δ2𝑞 · |Λ|

)
.

Remark 1.5. If the local computation cost is relaxed to be sublinear in the size of the input graph, as

in the local computation algorithm (LCA) model, a better bound of 𝑞 ≥ 9Δ was obtained in [BRY20].

Specifically, given any subset of vertices Λ ⊆ 𝑉 , their algorithm outputs an approximate sample 𝑋 from

𝜇Λ within 𝜀 total variation distance, in time𝑂 ((|𝑉 |/𝜀)0.68Δ |Λ|). Their approach is based on simulating

distributed local Markov chains and is unlikely to yield a local sampler in the sense of Theorem 1.4.

1.2.3. Local algorithms for probabilistic inference. An important application of efficient local samplers

lies in their connection to local counting for self-reducible problems, where they directly yield efficient

algorithms for probabilistic inference. In the (Bayesian) probabilistic inference problem, the goal is

typically to estimate how the marginal probability of a specific vertex changes under certain condi-

tions or observations. This task is fundamental to many areas and is particularly well-motivated in

machine learning and statistics, where inference plays a central role in prediction, decision-making,

and learning [DL93, DL97].

For a partial configuration 𝜎 ∈ [𝑞]Λ over a subset of vertices Λ ⊂ 𝑉 with 𝜇Λ(𝜎) > 0, and a vertex

𝑣 ∈ 𝑉 \ Λ, the conditional marginal distribution 𝜇𝜎
𝑣 is defined as:

∀𝑐 ∈ [𝑞], 𝜇𝜎
𝑣 (𝑐) ≜

∑
𝜏∈[𝑞]𝑉 :𝜏Λ=𝜎,𝜏𝑣=𝑐

𝜇(𝜏)
𝜇Λ(𝜎)

= Pr
𝜏∼𝜇
[𝜏𝑣 = 𝑐 | 𝜏Λ = 𝜎] .

Specifically, we obtain the following local algorithms for probabilistic inference in spin systems with

soft constraints and for proper 𝑞-colorings.

Theorem 1.6 (probabilistic inference in spin systems with soft constraints). There exists an algorithm
that, given access (as in Assumption 1) to a 𝑞-spin system S = (𝐺, 𝝀, 𝑨) with Gibbs distribution 𝜇 = 𝜇S

4

satisfying Condition 1.1, and given a subset of vertices Λ ⊂ 𝑉 , a partial configuration 𝜎 ∈ [𝑞]Λ with
𝜇Λ(𝜎) > 0, a vertex 𝑣 ∈ 𝑉 \ Λ, and parameters 𝜀, 𝛿 ∈ (0, 1), outputs an estimate 𝜇𝜎

𝑣 such that

Pr
[
∀𝑐 ∈ [𝑞] : (1 − 𝜀)𝜇𝜎

𝑣 (𝑐) ≤ 𝜇𝜎
𝑣 (𝑐) ≤ (1 + 𝜀)𝜇𝜎

𝑣 (𝑐)
]
≥ 1 − 𝛿,

in expected time 𝑂
(
𝜀−2𝛿−1Δ𝑞2 log 𝑞 · |Λ|

)
.

Theorem 1.7 (probabilistic inference for proper 𝑞-colorings). There exists an algorithm that, given a
graph 𝐺 = (𝑉, 𝐸) with maximum degree Δ and 𝑞 ≥ 65Δ, a partial proper 𝑞-coloring 𝜎 ∈ [𝑞]Λ of a subset
of vertices Λ ⊂ 𝑉 , a vertex 𝑣 ∈ 𝑉 \ Λ, and parameters 𝜀, 𝛿 ∈ (0, 1), outputs an estimate 𝜇𝜎

𝑣 such that

Pr
[
∀𝑐 ∈ [𝑞] : (1 − 𝜀)𝜇𝜎

𝑣 (𝑐) ≤ 𝜇𝜎
𝑣 (𝑐) ≤ (1 + 𝜀)𝜇𝜎

𝑣 (𝑐)
]
≥ 1 − 𝛿,

where 𝜇 denotes the uniform distribution over all proper 𝑞-colorings of𝐺 , in expected time𝑂
(
𝜀−2𝛿−1Δ2𝑞3 |Λ|

)
.

1.3. Technique overview. Previous works on local samplers include [AJ22] and [FGW
+
23], both of

which rely on unconditional marginal lower bounds, i.e., the local uniformity property. The work of

[AJ22] introduced a novel local sampler called “lazy depth-first search” (a.k.a. the A-J algorithm). To

sample the spin of a vertex according to its correct marginal distribution, the algorithm first draws a

random spin according to the unconditional marginal lower bounds, and with the remaining probability,

it recursively samples the spins of all neighboring vertices. The algorithm in [FGW
+
23] takes a different

approach, employing a backward deduction framework for Markov chains, referred to as “coupling
towards the past” (CTTP). Their method uses systematic Glauber dynamics combined with a grand

coupling based on unconditional marginal lower bounds, allowing the spin of a vertex to be inferred via

a convergent information-percolation process. Despite their differences, both approaches rely crucially

on unconditional marginal lower bounds (implied by local uniformity) to prevent excessive backtracking

and thus ensure the efficiency of the sampling procedure. For a more detailed comparison of the two

algorithms, we refer the reader to [FGW
+
23, Section 1.2].

We introduce key innovations that eliminate the reliance on local uniformity for local sampling.

While the high-level ideas are broadly applicable, we present our new local samplers within the coupling

towards the past (CTTP) framework for local Markov chains. Unlike the original CTTP algorithm of

[FGW
+
23], which depends on a default grand coupling derived from unconditional marginal lower

bounds, our approach introduces several new ideas to adapt the grand coupling, enabling efficient local

samplers without assuming unconditional marginal lower bounds.

To design local samplers for systems with soft constraints that lack local uniformity, we first generalize

the CTTP framework via an abstract notion of marginal sampling oracles: procedures that sample

from conditional marginal distributions given oracle access to the neighborhood configuration. This

abstraction allows each implementation of a marginal sampling oracle to correspond to a specific

simulation of Glauber dynamics — or more precisely, to a particular grand coupling of the chain. We

then implement the marginal sampling oracle via rejection sampling, which leverages the softness of

local constraints rather than relying on unconditional lower bounds on marginal probabilities. This

yields efficient local samplers for spin systems with soft constraints beyond local uniformity.

The case of truly repulsive spin systems is much more challenging, as no marginal lower bound exists.

Consequently, it is impossible to determine the outcome of an update at a given time with positive

probability without additional information. To address this, we further extend the CTTP framework to:

• allow partial information (rather than the full outcome) to be resolved at a given timestamp;

• allow the grand coupling strategy at timestamp 𝑡 to depend on earlier timestamps 𝑡′ < 𝑡,

introducing adaptivity into the grand couplings.

Leveraging these new ideas, we obtain the first local sampler for 𝑞-colorings with 𝑞 = 𝑂 (Δ) colors. We

note that similar ideas have appeared in Coupling From The Past (CFTP), which yields (global) perfect

samplers for 𝑞-colorings with 𝑞 = 𝑂 (Δ) colors [Hub98, BC20, JSS21]. Our technical contributions

regarding 𝑞-colorings can thus be viewed as local counterparts of these CFTP-based global samplers.

For the analyses of our local samplers, correctness follows from the validity of the underlying grand

coupling in each construction. For efficiency, we employ different approaches for spin systems with

soft and hard constraints. In the case of spin systems with soft constraints, the algorithm’s behavior is

relatively straightforward: we demonstrate that it is stochastically dominated by a subcritical branching

5

process, which directly implies its efficiency. In contrast, the 𝑞-coloring case exhibits more intricate

behavior, rendering the previous analysis inapplicable. To address this, we introduce a carefully designed

potential function that reflects the state of the algorithm and drops to zero upon termination. We prove

that this potential function evolves as a supermartingale with bounded differences throughout the

execution of the algorithm, thereby establishing efficiency.

1.4. Related topics. Our local sampler is built upon the Coupling Towards The Past (CTTP) framework

introduced in [FGW
+
23], which bears resemblance to the celebrated Coupling From The Past (CFTP)

method by Propp and Wilson [PW96] for perfect sampling from Markov chains, as both approaches

utilize the idea of grand coupling. (See Section 1.4 of [FGW
+
23] for a detailed comparison between

the two frameworks.) Notably, the CTTP framework is more restrictive than CFTP: an efficient local

sampler within the CTTP framework implies the existence of an efficient perfect sampler under CFTP,

but the converse does not hold. This asymmetry arises because CTTP aims to produce not only a perfect

sample but also a local one, whereas existing CFTP constructions typically rely on global knowledge in

the analysis [Hub98, BC20, JSS21].

The backward deduction of Markov chain states in the CTTP framework also bears resemblance

to the analysis of the cutoff phenomenon via the method of information percolation [LS16, LS17]. In

particular, [LS17] shows that Glauber dynamics for the ferromagnetic Ising model exhibits a cutoff

phenomenon in the near-critical regime 𝛽 ≤ 1 + 1
𝑂 (Δ) . Despite these structural similarities, the goals of

the two frameworks differ fundamentally: CTTP is designed for constructing local samplers, while the

information percolation approach is aimed at analyzing mixing times. Furthermore, our technique for

obtaining near-critical local samplers for the Ising model differs significantly from that of [LS17]: our

grand coupling at each time step is constructed using rejection sampling, whereas theirs is based on

discrete Fourier expansion. Additionally, the bounds we obtain are tighter than those in [LS17].

Our local sampler also falls into the category of providing local access to large random objects [BRY20,

BPR22, MSW22]. Given a 𝑞-spin system S = (𝐺 = (𝑉, 𝐸), 𝝀, 𝑨) and public random bits, our algorithm

can generate consistent samples 𝑋Λ such that 𝑋 ∼ 𝜇 = 𝜇S upon multiple queries of any subset of

vertices Λ ⊆ 𝑉 , using only a local number of probes for public random bits.

1.5. Organization. The paper is organized as follows:

• In Section 2, we introduce the necessary preliminaries.

• In Section 3, we present a generalized CTTP framework, with an abstract notion of “marginal

sampling oracles”, and show how to utilize this abstraction to yield local samplers beyond local

uniformity.

• In Section 4, we design a new marginal sampling oracle and apply it to obtain our local sampler

for spin systems with soft constraints, proving Theorems 1.2 and 1.6.

• In Section 5, we further extend the CTTP framework to design a local sampler for 𝑞-colorings,

proving Theorems 1.4 and 1.7.

• In Section 6, we summarize our contributions and outline potential future directions.

2. Preliminaries

2.1. Markov chain basics. Let Ω be a (finite) state space. Let (𝑋𝑡)∞𝑡=1 be a Markov chain over the state

space Ω with transition matrix 𝑃. A distribution 𝜋 over Ω is a stationary distribution of 𝑃 if 𝜋 = 𝜋𝑃.

The Markov chain 𝑃 is irreducible if for any 𝑥, 𝑦 ∈ Ω, there exists a timestamp 𝑡 such that 𝑃𝑡 (𝑥, 𝑦) > 0.

The Markov chain 𝑃 is aperiodic if for any 𝑥 ∈ Ω, gcd{𝑡 | 𝑃𝑡 (𝑥, 𝑥) > 0} = 1. If the Markov chain 𝑃

is both irreducible and aperiodic, then it has a unique stationary distribution. The Markov chain 𝑃 is

reversible with respect to the distribution 𝜋 if the following detailed balance equation holds.

∀𝑥, 𝑦 ∈ Ω, 𝜋(𝑥)𝑃(𝑥, 𝑦) = 𝜋(𝑦)𝑃(𝑦, 𝑥),

which implies 𝜋 is a stationary distribution of 𝑃. The mixing time of the Markov chain 𝑃 is defined by

∀𝜀 > 0, 𝑇 (𝑃, 𝜀) ≜ max
𝑋0∈Ω

max{𝑡 | 𝑑TV
(
𝑃𝑡 (𝑋0, ·), 𝜋

)
≤ 𝜀},

6

where the total variation distance is defined by

𝑑TV
(
𝑃𝑡 (𝑋0, ·), 𝜋

)
≜

1

2

∑︁
𝑦∈Ω

��𝑃𝑡 (𝑋0, 𝑦) − 𝜋(𝑦)
�� .

2.2. Systematic scan Glauber dynamics. The systematic scan Glauber dynamics is a generic way to

sample from Gibbs distributions defined by spin systems. Given a 𝑞-spin system S = (𝐺 = (𝑉, 𝐸), 𝝀, 𝑨).
Let 𝑛 = |𝑉 | and assume an arbitrary ordering 𝑉 = {𝑣0, 𝑣1, . . . , 𝑣𝑛−1}, and let 𝑇 > 0 be some finite

integer, the 𝑇-step systematic scan Glauber dynamics P(𝑇) = PS (𝑇)
(1) starts with an arbitrary configuration 𝑋−𝑇 ∈ [𝑞]𝑉 satisfying 𝜇(𝑋−𝑇) > 0 at time 𝑡 = −𝑇 ;

(2) at each time −𝑇 < 𝑡 ≤ 0,

(a) picks the vertex 𝑣 = 𝑣𝑖 (𝑡) where 𝑖(𝑡) ≜ 𝑡 mod 𝑛, let 𝑋𝑡 (𝑢) = 𝑋𝑡−1(𝑢) for every 𝑢 ∈ 𝑉 \ {𝑣};
(b) resample 𝑋𝑡 (𝑣) from the marginal distribution 𝜇

𝑋𝑡−1
𝑣 on 𝑣 conditioning on 𝑋𝑡−1 where

∀𝑐 ∈ [𝑞], 𝜇𝑋𝑡−1
𝑣 (𝑐) = 𝜇𝑋𝑡−1 (𝑁 (𝑣))

𝑣 (𝑐) ∝ 𝜆𝑣 (𝑐)
∏

𝑒=(𝑢,𝑣) ∈𝐸
𝐴𝑒 (𝜎(𝑢), 𝑐).

Here, the first equality is due to the conditional independence property of Gibbs distributions.

The systematic scan Glauber dynamics is not a time-homogeneous Markov chain. However, by

bundling 𝑛 consecutive updates together, we can obtain a time-homogeneous Markov chain, which is

aperiodic and reversible, which is sufficient for us to apply the following theorem.

Theorem 2.1 ([LPW17]). Let 𝜇 be a distribution with supportΩ ⊆ [𝑞]𝑉 . Let (𝑋𝑡)∞𝑡=0 denote the systematic
scan Glauber dynamics on 𝜇. If (𝑋𝑡)∞𝑡=0 is irreducible over Ω, it holds that

∀𝑋0 ∈ Ω, lim
𝑡→∞

𝑑TV (𝑋𝑡 , 𝜇) = 0.

3. Coupling towards the past without marginal lower bounds

Our local sampler is based on the Coupling Towards The Past (CTTP) framework recently introduced

in [FGW
+
23], which constructs a local sampler by evaluating multiple spin states from stationary

Markov chains through backward deduction. Our framework generalizes the CTTP framework by

replacing the default grand coupling, which uses unconditional marginal lower bounds, with grand

couplings defined by arbitrary “marginal sampling oracles”. This generalization allows us to design a

specific marginal sampling oracle that leads to a local sampler beyond the regime of local uniformity.

3.1. Marginal sampling oracles. Before introducing the CTTP framework, we first define marginal
sampling oracles. Due to the conditional independence property of Gibbs distributions, to sample from

the (conditional) marginal distribution 𝜇𝜎
𝑣 for a vertex 𝑣 ∈ 𝑉 and a configuration 𝜎 ∈ [𝑞]𝑉\𝑣 , it suffices

to retrieve the spins of all neighbors, 𝜎(𝑁 (𝑣)). A marginal sampling oracle generalizes this concept by

producing a marginal sample, given oracle access to the spin 𝜎(𝑢) of each neighbor 𝑢 ∈ 𝑁 (𝑣).

Definition 3.1 (marginal sampling oracle). Let 𝜇 be a distribution over [𝑞]𝑉 . For a variable 𝑣 ∈ 𝑉 , we

define EvaluateO (𝑣) as a procedure that makes oracle queries to O(𝑢), which consistently returns a

value 𝑐𝑢 ∈ [𝑞] for each 𝑢 ∈ 𝑁 (𝑣).
We say that EvaluateO (𝑣) is a marginal sampling oracle at 𝑣 (with respect to 𝜇) if:

• for each 𝜎 ∈ [𝑞]𝑁 (𝑣) , assuming O(𝑢) consistently returns 𝜎(𝑢) for each 𝑢 ∈ 𝑁 (𝑣), the output

of EvaluateO (𝑣) is distributed exactly as 𝜇𝜎
𝑣 .

Recall the definition of systematic scan Glauber dynamics P(𝑇) in Section 2.2. Using a marginal

sampling oracle, the systematic scan Glauber dynamics can be simulated as follows.

Definition 3.2 (simulation of systematic scan Glauber dynamics via a marginal sampling oracle). The

systematic scan Glauber dynamics P(𝑇) with respect to 𝜇 is simulated as:

(1) start with an arbitrary configuration 𝑋−𝑇 ∈ [𝑞]𝑉 satisfying 𝜇(𝑋−𝑇) > 0 at time 𝑡 = −𝑇 ;

(2) at each time −𝑇 < 𝑡 ≤ 0,

(a) pick the vertex 𝑣 = 𝑣𝑖 (𝑡) where 𝑖(𝑡) ≜ 𝑡 mod 𝑛, let 𝑋𝑡 (𝑢) = 𝑋𝑡−1(𝑢) for every 𝑢 ∈ 𝑉 \ {𝑣};
7

(b) let EvaluateO (𝑣) be a marginal sampling oracle (w.r.t 𝜇) at 𝑣 where the oracle accesses

O(𝑢) are replaced with 𝑋𝑡−1(𝑢) for each 𝑢 ∈ 𝑁 (𝑣), update 𝑋𝑡 (𝑣) ← EvaluateO (𝑣).

Remark 3.3 (grand coupling). In Definition 3.2, the only randomness involved is within the subroutine

EvaluateO (𝑣). Notably, for any implementation of a marginal sampling oracle, Definition 3.2 specifies a

simulation of systematic scan Glauber dynamics, and implicitly defines a grand coupling that couples the

Markov chain across all possible initial configurations. To see this, consider pre-sampling all random

variables used within EvaluateO (𝑣𝑖 (𝑡)) for each timestamp 𝑡, thereby defining the grand coupling.

3.2. Simulating stationary Markov chains using backward deduction. We present the CTTP

framework for constructing the local sampler, which is a backward deduction of the forward simulation

described in Definition 3.2 (or equivalently, the grand coupling constructed in Remark 3.3).

Consider the systematic scan Glauber dynamics running from the infinite past toward time 0, which

is the limiting process of P(𝑇) as 𝑇 →∞, denoted by P(∞). By Theorem 2.1, when P(𝑇) is irreducible,

the state 𝑋0 of this process is distributed exactly according to 𝜇. Our local sampler is then constructed

by resolving the outcome 𝑋0(Λ), where Λ is the queried set of vertices. For any 𝑡 ≤ 0 and 𝑢 ∈ 𝑉 , define

(5) pred𝑡 (𝑢) ≜ max{𝑡′ | 𝑡′ ≤ 𝑡, 𝑣𝑖 (𝑡 ′) = 𝑢}
as the last time, up to 𝑡, that vertex 𝑢 was updated. The local sampler is formally presented in Algorithm 1.

Algorithm 1: LocalSample(Λ;𝑀)
Input: A 𝑞-spin system S = (𝐺 = (𝑉, 𝐸), 𝝀, 𝑨), a subset of variables Λ ⊆ 𝑉 .

Output: A random configuration 𝑋 ∈ [𝑞]Λ.

Global variables: A mapping 𝑀 : Z→ [𝑞] ∪ {⊥}.
1 𝑋 ← ∅, 𝑀 ←⊥Z;
2 forall 𝑣 ∈ Λ do
3 𝑋 (𝑣) ← Resolve(pred0(𝑣);𝑀);
4 return 𝑋 ;

Line 3 of Algorithm 1 utilizes a procedure Resolve, formally presented as Algorithm 2, which takes

as input a timestamp 𝑡 ≤ 0, and determines the outcome of the update at time 𝑡 of P(∞).
Algorithm 2: Resolve(𝑡;𝑀)
Input: A 𝑞-spin system S = (𝐺 = (𝑉, 𝐸), 𝝀, 𝑨), a timestamp 𝑡 ≤ 0.

Output: A random value 𝑥 ∈ [𝑞].
Global variables: A mapping 𝑀 : Z→ [𝑞] ∪ {⊥}.

1 if 𝑀 (𝑡) ≠⊥ then return 𝑀 (𝑡); // check if the outcome is already resolved

2 𝑀 (𝑡) ← EvaluateO (𝑣𝑖 (𝑡)), with O(𝑢) replaced by Resolve(pred𝑡 (𝑢);𝑀) for each 𝑢 ∈ 𝑁 (𝑣𝑖 (𝑡));
3 return 𝑀 (𝑡);

A global data structure 𝑀 is maintained within Algorithm 1, storing the resolved values 𝑀 (𝑡) for

updates at each time 𝑡. It is initialized as 𝑀 =⊥Z in Line 1. This data structure 𝑀 is introduced to

facilitate memoization: the outcome of Resolve(𝑡) is evaluated only once, ensuring consistency across

multiple calls for the same 𝑡. For simplicity, we omit explicit references to 𝑀 and write LocalSample(Λ)
and Resolve(𝑡) instead of LocalSample(Λ;𝑀) and Resolve(𝑡;𝑀).

Line 2 of Algorithm 2 invokes a procedure EvaluateO (𝑣𝑖 (𝑡)), which is abstractly defined in Defini-

tion 3.1 but is not yet fully implemented. Recall that the purpose of EvaluateO (𝑣𝑖 (𝑡)) is to infer the value

to which the vertex 𝑣 = 𝑣𝑖 (𝑡) is updated in P(∞) at time 𝑡, which is distributed as 𝜇
𝑋𝑡−1 (𝑁 (𝑣))
𝑣 given

access to 𝑋𝑡−1(𝑁 (𝑣)). However, since Algorithm 2 implements a backward deduction (as opposed to a

forward simulation) of the chain, the neighborhood configuration 𝑋𝑡−1(𝑁 (𝑣)) at time 𝑡 is not available

directly. To address this, the algorithm recursively applies Algorithm 2 to infer the last updated value

of each neighbor 𝑢 ∈ 𝑁 (𝑣) before time 𝑡 (as specified in Line 2 of Algorithm 2).

Formally, the subroutine Evaluate(𝑡) must satisfy the following local correctness condition:

Condition 3.4 (local correctness of EvaluateO (𝑣)). For each 𝑣 ∈ 𝑉 , the procedure EvaluateO (𝑣) is a
marginal sampling oracle at 𝑣, satisfying the requirement of Definition 3.1.

8

Recall that Algorithm 2 is designed to resolve the outcome of P(∞) at time 0. However, the limiting

process P(∞) is well-defined only if P(𝑇) is irreducible. Additionally, we note that Algorithm 2

does not necessarily terminate. Nonetheless, we provide a sufficient condition that ensures both the

irreducibility of P(𝑇) and the termination of Algorithm 2.

Condition 3.5 (immediate termination of EvaluateO (𝑣)). For each 𝑣 ∈ 𝑉 , let E𝑣 be the event that
EvaluateO (𝑣) terminates without making any calls to O. Then, the following must hold:

Pr [E𝑣] > 0.

We now establish the correctness of Algorithm 1, assuming Conditions 3.4 and 3.5.

Lemma 3.6 (conditional correctness of Algorithm 1). Assume that Conditions 3.4 and 3.5 hold for
EvaluateO (𝑣). Then, for any Λ ⊆ 𝑉 , Algorithm 1 terminates with probability 1 and returns a random
value 𝑋 ∈ [𝑞]Λ distributed according to 𝜇Λ upon termination.

Lemma 3.6 is proved later in Section 3.3. It guarantees the termination and correctness of Algorithm 1,

without addressing its efficiency. Next, we provide a sufficient condition for the efficiency of Algorithm 1.

Condition 3.7 (condition for fast termination of EvaluateO (𝑣)). Let 𝛿 > 0 be a parameter. For each
𝑣 ∈ 𝑉 , and each 𝜎 ∈ [𝑞]𝑁 (𝑣) such that O(𝑢) consistently returns 𝜎(𝑢) for all 𝑢 ∈ 𝑁 (𝑣), let T 𝜎

𝑣 denote
the total number of calls to O(𝑢) over all 𝑢 ∈ 𝑁 (𝑣). Then, the following holds:

E
[
T 𝜎
𝑣

]
≤ 1 − 𝛿.

We conclude this subsection with the following lemma, which establishes the efficiency of our local

sampler under the assumption of Condition 3.7. Notably, it provides an upper bound on the total number

of recursive Resolve calls, rather than simply counting the number of initial calls for each 𝑡 ≤ 0.

Lemma 3.8 (conditional efficiency of Algorithm 1). Assuming Condition 3.7 holds, the expected total
number of calls to Resolve(𝑡) within LocalSample(Λ) is 𝑂 (|Λ|).

Proof. The introduction of the map 𝑀 in Line 1 of Resolve(𝑡) is for memoization and only reduces the

number of recursive calls. As a result, the expected running time of LocalSample(Λ) can be upper-

bounded by the sum of the expected running times of Resolve(pred0(𝑣)) for each 𝑣 ∈ Λ. It remains to

show that the expected running time of Resolve(pred0(𝑣)) is 𝑂 (1) for each 𝑣 ∈ 𝑉 .

As the mapping 𝑀 only reduces the number of recursive calls, the behavior of Resolve(pred0(𝑣))
can be stochastically dominated by the following multitype Galton-Watson branching process:

• Start with a root node labeled with pred0(𝑣) at depth 0.

• For each 𝑖 = 0, 1, . . .: for all current leaves labeled with some timestamp 𝑡 at depth 𝑖:

– Perform an independent run of Resolve(𝑡), and for each timestamp 𝑡′ < 𝑡 such that

Resolve(𝑡) is directly recursively called, add a new node labeled with 𝑡′ as a child of 𝑡.

By Condition 3.7, for any timestamp 𝑡 ≤ 0, the expected number of offspring of a node labeled 𝑡 is at

most 1 − 𝛿. Thus, applying the theory of branching processes, the expected number of nodes generated

by this process is at most 𝛿−1 = 𝑂 (1). Therefore, the expected number of Resolve(𝑡) calls within

LocalSample(Λ) is 𝑂 (|Λ|), completing the proof of the lemma. □

3.3. Conditional correctness of the local sampler. We will prove Lemma 3.6, which addresses the

conditional correctness of the local sampler (Algorithm 1). At a high level, the proof follows the same

structure of the proof in [FGW
+
23].

First, we need to establish some basic components.

Lemma 3.9. Assume that both Conditions 3.4 and 3.5 hold for EvaluateO (𝑣), then P(𝑇) is irreducible.

Proof. Recall that in Condition 3.5, for any 𝑣 ∈ 𝑉 and 𝜎 ∈ [𝑞]𝑁 (𝑣) , E𝜎
𝑣 denotes the event that

EvaluateO (𝑣) terminates without any calls to O, assuming that O(𝑢) consistently returns 𝜎(𝑢) for each

𝑢 ∈ 𝑁 (𝑣). For any 𝑣 ∈ 𝑉 , let 𝑐𝑣 ∈ [𝑞] be an arbitrary possible outcome of EvaluateO (𝑣), conditioning

9

on E𝑣 happens. Note that such 𝑐𝑣 always exists by Condition 3.5. Then combining with Condition 3.4,

we have

(6) min
𝜎∈[𝑞]𝑁 (𝑣)

𝜇𝜎
𝑣 (𝑐𝑣) > 0.

Let 𝜏 ∈ [𝑞]𝑉 be the constant configuration where 𝜏(𝑣) = 𝑐𝑣 for 𝑡 = pred0(𝑣). By (6) and the chain

rule, we see that 𝜇(𝜏) > 0. Also following (6), any 𝜎 ∈ [𝑞]𝑉 such that 𝜇(𝜎) > 0 can reach 𝜏 through

Glauber moves by changing some 𝜎(𝑢) to 𝜏(𝑢) one at a time. Note that P(𝑇) is reversible, therefore,

any 𝜎 ∈ [𝑞]𝑉 such that 𝜇(𝜎) > 0 can also be reached from 𝜏 and hence P(𝑇) is irreducible. □

For any finite 𝑇 > 0, we introduce the following finite-time version of Algorithm 1, presented as

Algorithm 3, which locally resolves the final state 𝑋0 of P(𝑇). Note that the only difference between

Algorithms 1 and 3 is the different initialization of the map 𝑀 .

Algorithm 3: LocalSample𝑇 (Λ)
Input: a 𝑞-spin system S = (𝐺 = (𝑉, 𝐸), 𝝀, 𝑨), a subset of variables Λ ⊆ 𝑉
Output: A random configuration 𝑋 ∈ [𝑞]Λ
Global variables: a map 𝑀 : Z→ [𝑞] ∪ {⊥}

1 𝑋 ← ∅, 𝑀 (𝑡) ← 𝑋−𝑇 (𝑣𝑖 (𝑡)) for each 𝑡 ≤ −𝑇, 𝑀 (𝑡) ←⊥ for each 𝑡 > −𝑇 ;

2 forall 𝑣 ∈ Λ do
3 𝑋 (𝑣) ← Resolve(pred0(𝑣));
4 return 𝑋 ;

We then have the following lemma.

Lemma 3.10. Assume that both Conditions 3.4 and 3.5 hold for EvaluateO (𝑣). Then,

(1) LocalSample(Λ) terminates with probability 1;
(2) For any initial state 𝑋−𝑇 , it holds that lim

𝑇→∞
𝑑TV

(
LocalSample(Λ), LocalSample𝑇 (Λ)

)
= 0.

Proof. We start with proving Item 1. It suffices to show the termination of Resolve(𝑡0) for any 𝑡0 ≤ 0.

Recall the event E𝑣 in Condition 3.5. For each 𝑡 ≤ 0, we similarly let E𝑡 denote the event that

EvaluateO (𝑣𝑖 (𝑡)) within Resolve(𝑡) terminates without making any calls to O. We also define the event:

B𝑡 : E𝑡 ′ happens for all 𝑡′ ∈ [𝑡 − 𝑛 + 1, 𝑡] .

We claim that if B𝑡 happens for some 𝑡 ≤ 𝑡0, then no recursive calls to Resolve(𝑡′) would be incurred

for any 𝑡′ ≤ 𝑡 − 𝑛 within LocalSample(Λ). For the sake of contradiction, assume that a maximum

𝑡∗ ≤ 𝑡 − 𝑛 exists such that Resolve(𝑡∗) is called. As 𝑡∗ ≤ 𝑡 − 𝑛 < 𝑡0 , Resolve(𝑡∗) must be recursively

called directly within another instance of Resolve(𝑡′) (through EvaluateO (𝑣𝑖 (𝑡 ′))) such that 𝑡∗ < 𝑡′.

Note that by Algorithm 2, the fact that EvaluateO (𝑣𝑖 (𝑡)) only make recursive calls to Resolve(pred𝑡 (𝑢))
for some 𝑢 ∈ 𝑁 (𝑣𝑖 (𝑡)) and (5) we also have 𝑡∗ > 𝑡′ − 𝑛. We then have two cases:

(1) 𝑡′ ≤ 𝑡 − 𝑛, this contradicts the maximality assumption for 𝑡∗.
(2) Otherwise 𝑡′ > 𝑡 − 𝑛. By 𝑡∗ ≤ 𝑡 − 𝑛 and 𝑡′ < 𝑡∗ + 𝑛 we have 𝑡′ ∈ [𝑡 − 𝑛 + 1, 𝑡]. Also, by the

assumption that B𝑡 happens, we have E𝑡 ′ happens; therefore, Resolve(𝑡′) would have directly

terminated without incurring any recursive call. This also leads to a contradiction and thus

proves the claim.

Let 𝑝 ≜ min
𝑡

Pr [E𝑡], then 𝑝 > 0 by Condition 3.5. Note that by Condition 3.5, for any 𝑡 ≤ 𝑡0, we

have

Pr [B𝑡] =
𝑡∏

𝑡 ′=𝑡−𝑛+1
Pr [E𝑡 ′] ≥ (1 − 𝑝)𝑛 > 0,

where the first equality is by E𝑡 only depends on the randomness of procedure Evaluate, therefore all

E𝑡 ′ are independent.

10

For any 𝐿 > 0, let E𝐿 be the event that there is a recursive call to Resolve(𝑡∗) where 𝑡∗ ≤ 𝑡0 − 𝐿𝑛. By

the claim above,

Pr [E𝐿] ≤ Pr

[
𝐿−1∧
𝑗=0

(
¬B𝑡0− 𝑗𝑛

)]
=

𝐿−1∏
𝑗=0

Pr
[
¬B𝑡0− 𝑗𝑛

]
≤ (1 − 𝑝)𝐿 ,

where the equality is again due to independence of (E𝑡)𝑡≤𝑡0 . Consequently, with probability 1, there is

only a finite number of recursive calls, meaning that LocalSample(Λ) terminates with probability 1.

This establishes Item 1.

For any 𝑡 ≤ 0, since Resolve(𝑡) terminates with probability 1, its output distribution is well-defined.

Therefore, the output distribution of LocalSample(Λ) is well-defined. For any 𝜀 > 0, we choose a

sufficiently large 𝐿 such that (1 − 𝑝)𝐿 ≤ 𝜀. For any 𝑇 ≥ 𝐿𝑛 − 𝑡0, we couple LocalSample(Λ) with

LocalSample𝑇 (Λ) by pre-sampling all random variables used in EvaluateO (𝑣𝑖 (𝑡)) within Resolve(𝑡) for

each 𝑡 ≤ 0. Here by Condition 3.4, the coupling fails if and only if Resolve(𝑡′) is recursively called

within LocalSample(Λ) for some 𝑡′ ≤ −𝑇 , that is, E𝐿 happens. By the coupling lemma, we have

𝑑TV
(
LocalSample(Λ), LocalSample𝑇 (Λ)

)
≤ Pr [E𝐿] ≤ (1 − 𝑝)𝐿 ≤ 𝜀,

which proves Item 2 as we take 𝑇 →∞. □

For any finite 𝑇 > 0 and −𝑇 ≤ 𝑡 ≤ 0, we let 𝑋𝑇,𝑡 be the state of 𝑋𝑡 in P(𝑇). The following lemma

shows LocalSample𝑇 indeed simulates P(𝑇).

Lemma 3.11. Assume that Conditions 3.4 and 3.5 hold for EvaluateO (𝑣). Then for any Λ ⊆ 𝑉 , the value
returned by LocalSample𝑇 (Λ) is identically distributed as 𝑋𝑇,0(Λ).

Proof. We maximally couple the value returned by each Resolve(𝑡) and 𝑋𝑡 (𝑣𝑖 (𝑡)) in P(𝑇) for each 𝑡 ≤ 𝑇
and claim that in this case, the value returned by each Resolve(𝑡) is exactly the same as 𝑋𝑡 (𝑣𝑖 (𝑡)) in

P(𝑇); hence the lemma holds by the definition of LocalSample𝑇 and (5).

We prove the claim by induction from time −𝑇 to 0. For each −𝑇 ≤ 𝑡 < 0, let 𝑣 = 𝑣𝑖 (𝑡) and consider

the value returned by Resolve(pred𝑡 (𝑢)) for each 𝑢 ∈ 𝑁 (𝑣):
• If pred𝑡 (𝑢) < −𝑇 , then by (5), the value of 𝑢 is not updated up to time 𝑡 in P(𝑇), hence 𝑋𝑡 (𝑢) =
𝑋−𝑇 (𝑢) and the value returned by Resolve(pred𝑡 (𝑢)) is 𝑋−𝑇 (𝑢) = 𝑋𝑡 (𝑢) by the initialization of

𝑀 in Algorithm 3.

• Otherwise, −𝑇 ≤ pred𝑡 (𝑢) < 𝑡 by (5) and 𝑢 ∈ 𝑁 (𝑣), so the value returned by Resolve(pred𝑡 (𝑢))
is 𝑋pred𝑡 (𝑢) = 𝑋𝑡 (𝑢) by the induction hypothesis. Hence by Line 2 of Algorithm 2 and Condi-

tion 3.4, both the distribution of Resolve(𝑡) and 𝑋𝑡 (𝑣𝑖 (𝑡)) is 𝜇𝑋𝑡−1 (𝑁 (𝑣)) (𝑣) and hence can be

perfectly coupled.

Hence, the claim holds, and the lemma is proved. □

We are now ready to prove Lemma 3.6.

Proof of Lemma 3.6. By Item 1 of Lemma 3.10, we have LocalSample(Λ) terminates with probabil-

ity 1 and its output distribution is well-defined. It remains to prove that the output distribution of

LocalSample(Λ) is exactly 𝜇Λ.

By Lemma 3.9, we have that P(𝑇) is irreducible. Then, Theorem 2.1 implies that

(7) lim
𝑇→∞

𝑑TV
(
𝜇Λ, 𝑋𝑇,0(Λ)

)
= 0,

For any 𝑇 ≥ 0, by the triangle inequality, we have

𝑑TV (𝜇Λ, LocalSample(Λ)) ≤𝑑TV
(
𝜇Λ, LocalSample𝑇 (Λ)

)
(8)

+ 𝑑TV
(
LocalSample(Λ), LocalSample𝑇 (Λ)

)
.

11

Altogether, the theorem follows from

𝑑TV (𝜇Λ, LocalSample(Λ))
(by (8)) ≤ lim sup

𝑇→∞
𝑑TV

(
𝜇Λ, LocalSample𝑇 (Λ)

)
+ lim sup

𝑇→∞
𝑑TV

(
LocalSample𝑇 (Λ), LocalSample(Λ)

)
(by Lemma 3.10) = lim sup

𝑇→∞
𝑑TV

(
𝜇Λ, LocalSample𝑇 (Λ)

)
(by (8)) ≤ lim sup

𝑇→∞
𝑑TV

(
𝜇Λ, 𝑋𝑇,0(Λ)

)
+ lim sup

𝑇→∞
𝑑TV

(
𝑋𝑇,0(Λ), LocalSample𝑇 (Λ)

)
(by Lemma 3.11) = lim sup

𝑇→∞
𝑑TV

(
𝜇Λ, 𝑋𝑇,0(Λ)

)
(by (7)) = 0. □

4. Application: a local sampler for spin systems with soft constraints

In this section, we construct a new marginal sampling oracle for 𝑞-spin systems with soft constraints.

We will use this oracle to build our local sampler and prove Theorems 1.2 and 1.6. Our construction

is inspired by a simple rejection sampling procedure for sampling from 𝜇𝜎
𝑣 , given the neighborhood

configuration 𝜎 ∈ [𝑞]𝑁 (𝑣) for some 𝑣 ∈ 𝑉 .

This rejection sampling procedure is described as follows:

(1) Propose a random value 𝑐 ∈ [𝑞] distributed according to 𝜆𝑣 ;

(2) With probability

∏
𝑒=(𝑢,𝑣) ∈𝐸

𝐴𝑒 (𝜎(𝑢), 𝑐), accept the proposal and return 𝑐 as the final outcome;

Otherwise, reject the proposal and go to Step (1).

Note that the well-definedness of the above procedure follows from Condition 1.1, which ensures

that all 𝜆𝑣 and 𝐴𝑒 are normalized. Given a 𝑞-spin system S = (𝐺 = (𝑉, 𝐸), 𝝀, 𝑨), for any vertex 𝑣 ∈ 𝑉 ,

we can then define a marginal sampling oracle at 𝑣 based on the rejection sampling procedure.

Algorithm 4: a marginal sampling oracle for 𝑞-spin systems with soft constraints

Input: A 𝑞-spin system S = (𝐺 = (𝑉, 𝐸), 𝝀, 𝑨), a vertex 𝑣 ∈ 𝑉 .

Output: A value 𝑋 ∈ [𝑞].
Oracle access: O(𝑢) for each 𝑢 ∈ 𝑁 (𝑣).

1 Sample an infinite long sequence of i.i.d. tuples {(𝑐𝑖 , (𝑟𝑖,𝑢)𝑢∈𝑁 (𝑣))}1≤𝑖<∞ where each 𝑐𝑖 ∈ [𝑞] is

distributed as 𝜆𝑣 and each 𝑟𝑖,𝑢 is chosen uniformly from [0, 1];
2 𝑖∗ ← min{𝑖 | ∀𝑒 = (𝑢, 𝑣) ∈ 𝐸, 𝑟𝑖,𝑢 < 𝐴𝑒 (O(𝑢), 𝑐𝑖)};
3 return 𝑐𝑖∗ ;

We remark that in Line 2 of Algorithm 4, such an 𝑖∗ always exists because 𝐴𝑒 satisfies Condition 1.1.

We now present the following lemma.

Lemma 4.1. Suppose that the input 𝑞-spin system S satisfies Condition 1.1. Then, Algorithm 4 implements
a marginal sampling oracle at 𝑣.

Proof. Given a 𝑞-spin system S = (𝐺 = (𝑉, 𝐸), 𝝀, 𝑨), in Algorithm 4, for each 𝑖 ≥ 1 and each 𝑢 ∈ 𝑁 (𝑣),
recall that each 𝑐𝑖 is chosen distributed as 𝑝 ∈ Δ𝑞 where 𝑝(𝑥) ∝ 𝜆𝑣 (𝑥) and each 𝑟𝑖,𝑢 is independently

chosen uniformly from [0, 1]. Let D𝑖 be the event that

D𝑖 : ∀𝑒 = (𝑢, 𝑣) ∈ 𝐸, 𝑟𝑖,𝑢 < 𝐴𝑒 (O(𝑢), 𝑐𝑖),
12

then for any 𝑥 ∈ [𝑞], note that O(𝑢 𝑗) = 𝜎(𝑢 𝑗) under assumption, we have

Pr [𝑐𝑖 = 𝑥 | D𝑖] =
Pr [𝑐𝑖 = 𝑥 ∧ D𝑖]

Pr [D𝑖]

=

𝜆𝑣 (𝑥)
∏

𝑒=(𝑢,𝑣) ∈𝐸
𝐴𝑒 (𝜎(𝑢), 𝑥)

∑
𝑐∈[𝑞]

(
𝜆𝑣 (𝑐)

∏
𝑒=(𝑢,𝑣) ∈𝐸

𝐴𝑒 (𝜎(𝑢), 𝑐)
) = 𝜇𝜎

𝑣 (𝑥).

Let 𝑖∗ be the smallest index chosen in Line 2 of Algorithm 4, i.e., 𝑖∗ = min{𝑖 | D𝑖}. the output of

Algorithm 4 follows the distribution of 𝑐𝑖∗ conditioning on D𝑖∗ , concluding the proof of the lemma. □

The marginal sampling oracle in Algorithm 4 as originally designed would require a significant

number of oracle calls in Line 2, potentially violating the efficiency condition outlined in Condition 3.7.

The key optimization is to invoke the oracle O(𝑢) only when necessary for each neighbor 𝑢 ∈ 𝑁 (𝑣),
rather than for every iteration in Algorithm 4. Formally, assuming Condition 1.1 holds, in Line 2 of

Algorithm 4, if 𝑟𝑖,𝑢 < 𝐶, where𝐶 = 𝐶 (Δ, 𝛿) ≜ 1− 1−𝛿
2Δ , then the inequality 𝑟𝑖,𝑢 < 𝐴𝑒 (O(𝑢), 𝑐𝑖) will hold

true regardless of the value of O(𝑢). This is because the term 𝐶 is chosen such that 𝑟𝑖,𝑢 is sufficiently

small to ensure success in the comparison without needing the actual value of O(𝑢). Consequently,

it becomes unnecessary to call O(𝑢) when 𝑟𝑖,𝑢 < 𝐶. With this idea of optimization, we propose the

following implementation of EvaluateO (𝑣), presented in Algorithm 5, which builds upon the above

idea to efficiently sample without violating the fast termination condition.

Algorithm 5: EvaluateO (𝑣)
Input: A 𝑞-spin systems S = (𝐺 = (𝑉, 𝐸), 𝝀, 𝑨), a vertex 𝑣 ∈ 𝑉 .

Output: A value 𝑐 ∈ [𝑞].
1 Sample an infinite long sequence of i.i.d. tuples {(𝑐𝑖 , (𝑟𝑖,𝑢)𝑢∈𝑁 (𝑣))}1≤𝑖<∞, where each 𝑐𝑖 ∈ [𝑞] is

distributed as 𝜆𝑣 and each 𝑟𝑖,𝑢 is chosen uniformly from [0, 1];
2 for 𝑖 = 1, 2, ... do
3 flag← 1;

4 for 𝑒 = (𝑢, 𝑣) ∈ 𝐸 do
5 if 𝑟𝑖,𝑢 ≥ 𝐶 then
6 if 𝑟𝑖,𝑢 ≥ 𝐴𝑒 (O(𝑢), 𝑐𝑖) then flag← 0;

7 if flag = 1 then return 𝑐𝑖 ;

Remark 4.2 (principle of deferred decision). In Line 1 of Algorithm 5, we are required to sample an

infinitely long sequence {(𝑐𝑖 , {𝑟𝑖,𝑢}𝑢∈𝑁 (𝑣))}1≤𝑖<∞. Obviously, it is not feasible to directly sample an

infinite number of random variables for implementation. Instead, we adopt the principle of deferred

decision: each 𝑐𝑖 and 𝑟𝑖,𝑢 is generated only when they are accessed in Lines 4 and 6 of Algorithm 5.

Next, we show that the marginal sampling oracle EvaluateO (𝑣) in Algorithm 5 satisfies the conditions

for both correctness and efficiency.

Lemma 4.3. Suppose that the input 𝑞-spin system S satisfies Condition 1.1. Then, the marginal sampling
oracle EvaluateO (𝑣) implemented as in Algorithm 5 satisfies both Condition 3.4 and Condition 3.5.

Proof. Condition 3.4 can be verified directly by Lemma 4.1 and comparing Algorithms 4 and 5.

For Condition 3.5, recall that E𝑣 is the event that EvaluateO (𝑣) in Algorithm 5 terminates without

any calls to O. Note that E𝑣 occurs if and only if Algorithm 5 terminates within 1 round of the loop

at Line 2 and 𝑟1,𝑢 < 𝐶 holds for each 𝑢 ∈ 𝑁 (𝑣). Since 𝑐1 and each 𝑟1,𝑢 are independent, assuming the

𝑞-spin system S satisfies Condition 1.1 with constant 𝛿 > 0, we immediately have

Pr [E𝑡] ≥ 𝐶Δ > 0.

It verifies that EvaluateO (𝑣) satisfies Condition 3.5 assuming Condition 1.1 holds. □
13

Lemma 4.4. Suppose that the input 𝑞-spin system S satisfies Condition 1.1. Then, the marginal sampling
oracle EvaluateO (𝑣) implemented as in Algorithm 5 satisfies Condition 3.7.

Proof. Fix some 𝑣 ∈ 𝑉 . Also fix some 𝜎 ∈ [𝑞]𝑁 (𝑣) and assume that O(𝑢) returns 𝜎(𝑢) within

EvaluateO (𝑣). Within each round of the outer for loop at Line 2 of Algorithm 5, the expected total

number of oracle calls to O(𝑢) for any 𝑢 ∈ 𝑁 (𝑣) is given by:

E [number of calls to O(·) in one iteration] =
∑︁
𝑐∈[𝑞]

©­«𝜆𝑣 (𝑐)
∑︁

𝑒=(𝑢,𝑣) ∈𝐸
(1 − 𝐶)ª®¬ .(9)

Let I𝜎
𝑣 be the number of executions of the outer for loop at Line 2 in EvaluateO (𝑣). Note that I𝜎

𝑣

corresponds exactly to the number of executions of Item 1 in the rejection sampling. Therefore,

E
[
I𝜎
𝑣

]
=

1∑
𝑐∈[𝑞]

(
𝜆𝑣 (𝑐)

∏
𝑒=(𝑢,𝑣) ∈𝐸

𝐴𝑒 (𝜎(𝑢), 𝑐)
) .(10)

Note that the number of oracle calls in each iteration are i.i.d. random variables with finite mean.

Applying Wald’s equation, we have:

E
[
T 𝜎
𝑣

]
= E

[
I𝜎
𝑣

]
· E [number of calls to O(·) in one iteration] .

It then follows from (9) and (10) that:

E
[
T 𝜎
𝑣

]
=

∑
𝑐∈[𝑞]

(
𝜆𝑣 (𝑐)

∑
𝑒=(𝑢,𝑣) ∈𝐸

(1 − 𝐶)
)

∑
𝑐∈[𝑞]

(
𝜆𝑣 (𝑐)

∏
𝑒=(𝑢,𝑣) ∈𝐸

𝐴𝑒 (𝜎(𝑢), 𝑐)
)

(by Condition 1.1) ≤

∑
𝑐∈[𝑞]

(𝜆𝑣 (𝑐) · (1 − 𝐶) · |𝑁 (𝑣) |)∑
𝑐∈[𝑞]

(
𝜆𝑣 (𝑐) · 𝐶Δ

)
(by 𝐶 = 1 − 𝛿

2Δ
) ≤

∑
𝑐∈[𝑞]
(𝜆𝑣 (𝑐) (1 − 𝛿)/2)∑

𝑐∈[𝑞]
(𝜆𝑣 (𝑐) (1 + 𝛿)/2)

< 1.

It proves that EvaluateO (𝑣) satisfies Condition 3.7 assuming Condition 1.1 holds. □

We are now ready to prove Theorems 1.2 and 1.6.

Proof of Theorem 1.2. We use Algorithm 1 as our local sampler, where the subroutine EvaluateO (𝑣) is

implemented by Algorithm 5 (using the principle of deferred decision as explained in Remark 4.2).

Here, the correctness of sampling follows from Lemmas 3.6 and 4.3.

For efficiency, by Lemmas 3.8 and 4.4, we have that the expected number of Resolve calls is 𝑂 (|Λ|).
Also, note that each outer loop either terminates directly or results in at least one call to Resolve.

Hence, the overall running time is bounded by Δ log 𝑞 times the total number of Resolve calls, which is

𝑂 (|Λ|Δ log 𝑞) in expectation. □

Proof of Theorem 1.6. Note that by the self-reducibility of spin systems with soft constraints (i.e., Condi-

tion 1.1 holds under arbitrary pinning), we have the uniform lower bound:

∀𝑣 ∈ 𝑉, 𝑐 ∈ [𝑞], 𝜇𝜎
𝑣 (𝑐) ≥

𝐶 (Δ, 𝛿)Δ
𝑞

≥ 1

2𝑞
.

14

This ensures that the marginal probabilities 𝜇𝜎
𝑣 (𝑥) are all bounded away from zero. Therefore, by

the Chernoff bound, for each 𝑥 ∈ 𝑄𝑣 , the value 𝜇𝜎
𝑣 (𝑥) can be estimated to within a multiplicative error

of (1 ± 𝜀) with probability at least 0.9 using 𝑂 (𝑞/𝜀2) approximate samples.

According to Theorem 1.2, each such sample can be generated in expected time 𝑂 (|Λ|Δ log 𝑞), where

we easily handle the conditioning in 𝜎 by setting 𝑀 (𝑡) = 𝜎(𝑣𝑖 (𝑡)) whenever Resolve(𝑡) is called for

some 𝑣𝑖 (𝑡) ∈ Λ, so the total expected cost to estimate all 𝜇𝜎
𝑣 (𝑥) for 𝑥 ∈ 𝑄𝑣 is bounded by

𝑂

(
|Λ|𝑞2 log 𝑞Δ𝜀−2

)
.(11)

Applying Markov’s inequality, the probability that the total cost exceeds this bound is at most 0.1.

Therefore, by truncating the algorithm’s running time to (11), we obtain a bounded-cost algorithm

which, with probability at least 0.9 − 0.1 = 0.8, returns estimates of all 𝜇𝜎
𝑣 (𝑥) within a multiplicative

factor of (1 ± 𝜀) for all 𝑥 ∈ 𝑄𝑣 .

Finally, to boost the success probability to at least 1 − 𝛿/𝑞, we repeat this procedure independently

𝑂 (log(𝑞/𝛿)) times and take the median of the resulting estimates. This yields the desired algorithm

claimed in the theorem by applying Chernoff’s bound again. □

5. Extension: a local sampler for 𝑞-colorings

In this section, we show how to extend our CTTP framework to design local samplers for a prototypical

spin system with truly repulsive hard constraints: the proper 𝑞-colorings.

A key challenge in applying the CTTP framework to problems with hard constraints lies in the absence

of unconditional marginal lower bounds. In the systematic scan Glauber dynamics P(𝑇) = (𝑋𝑡)0𝑡=−𝑇
for 𝑞-colorings, determining the outcome of an update at node 𝑣 = 𝑣𝑖 (𝑡) at time 𝑡 requires knowledge of

the color set 𝑆𝑡 , defined as the set of colors assigned to the neighbors of 𝑣 in the configuration 𝜎𝑡 :

(12) 𝑆𝑡 ≜ {𝑋𝑡 (𝑢) | 𝑢 ∈ 𝑁 (𝑣)}.
To correctly perform the update at time 𝑡, one needs to sample uniformly from [𝑞] \ 𝑆𝑡 . However, if for

any neighbor 𝑢 ∈ 𝑁 (𝑣), the outcome of its most recent update occurring at time pred𝑡 (𝑢) is unknown,

then the update at time 𝑡 cannot be resolved with positive probability. In other words, the immediate

termination condition (Condition 3.5) does not hold without additional information.

To generate a uniform sample from the set [𝑞] \ 𝑆𝑡 , we could use a rejection sampling procedure

similar to that described in the previous section: propose a color 𝑐 uniformly at random from [𝑞],
and accept it if 𝑐 ∉ 𝑆𝑡 . Since 𝑆𝑡 contains at most Δ colors, when 𝑞 > 𝐶Δ for some sufficiently large

constant 𝐶, this rejection sampling succeeds with constant probability. However, a key challenge

remains: determining whether 𝑐 ∈ 𝑆𝑡 requires knowledge of 𝑋𝑡 (𝑢) for each neighbor 𝑢 ∈ 𝑁 (𝑣), which

may lead to endless recursion.

The crucial observation is that for each neighbor 𝑢 ∈ 𝑁 (𝑣), at the time of its last update 𝑡′ = pred𝑢 (𝑡),
the probability that 𝑋𝑡 ′ (𝑢) = 𝑐 is at most

1
| [𝑞]\𝑆𝑡′ | , which is bounded above by

2
𝑞

under the assumption

𝑞 ≥ 2Δ. This allows us to implement a probabilistic filter to test whether 𝑋𝑡 ′ (𝑢) ≠ 𝑐 as follows:

• With probability 1 − 2
𝑞

, we directly certify that 𝑋𝑡 ′ (𝑢) ≠ 𝑐;
• With the remaining probability

2
𝑞

, we first check whether 𝑐 ∈ 𝑆𝑡 ′ :
– If 𝑐 ∈ 𝑆𝑡 ′ , we can immediately certify that 𝑋𝑡 ′ (𝑢) ≠ 𝑐. This condition can be verified

recursively by invoking a similar procedure for each neighbor 𝑤 ∈ 𝑁 (𝑢);
– Otherwise, we set 𝑋𝑡 ′ (𝑢) = 𝑐with probability

𝑞/2
| [𝑞]\𝑆𝑡′ | , and otherwise certify that 𝑋𝑡 ′ (𝑢) ≠ 𝑐.

Observe that the filtering procedure terminates immediately with probability at least 1 − 2
𝑞

. When 𝑞

is sufficiently large, this high probability of immediate termination serves as the basis of the recursion,

allowing us to avoid infinite recursion. To fully implement this filtering process, two aspects remains to

be specified: what it means to “certify” that a color cannot appear at a given timestamp 𝑡, and how to

simulate a trial with an unknown success probability
𝑞/2

| [𝑞]\𝑆𝑡′ | . We briefly outline these below:

• To certify that a certain color cannot appear at timestamp 𝑡, we have an auxiliary mapping

𝐿 : Z→ 2[𝑞] maintained globally outside the recursion, where each 𝐿 (𝑡) is initially set to [𝑞].
This data structure records the set of available colors at each timestamp. The color assigned at

15

time 𝑡 is interpreted as being uniformly sampled from 𝐿 (𝑡) \ 𝑆𝑡 . Thus, to certify that 𝑐 cannot

be the outcome of the update at time 𝑡, we simply remove 𝑐 from 𝐿 (𝑡).
• Although we cannot directly compute the probability

𝑞/2
| [𝑞]\𝑆𝑡′ | since 𝑆𝑡 ′ is not explicitly known,

we can query the membership of certain colors in 𝑆𝑡 ′ through recursive calls. This allows us

to employ a Bernoulli factory algorithm to simulate a Bernoulli trial with the correct success

probability
𝑞/2

| [𝑞]\𝑆𝑡′ | .

Remark 5.1 (adaptivity of the grand coupling). As noted in Remark 3.3, simulating the Markov chain

in this manner implicitly defines a grand coupling over all starting configurations. In the procedure

described above, this grand coupling is adaptive: the coupling decision at a given timestamp 𝑡 may

depend on the outcome of the coupling at an earlier time 𝑡′ < 𝑡. This adaptivity is a crucial feature

of our local sampler for 𝑞-colorings. Later, we will show that it does not compromise the correctness

of the Coupling Towards The Past (CTTP) framework. We also note that similar adaptive strategies

have been employed in the design of several perfect sampling algorithms based on the Coupling From

The Past (CFTP) method [BC20, JSS21]. However, our strategy fundamentally differs from those in the

CFTP framework, due to the additional constraints imposed by local samplers.

5.1. The local sampler. We now formally present our local sampler for 𝑞-colorings. As discussed

above, our local sampler is built on the CTTP framework, with a key modification that allows partial

information whether an updated outcome equals some particular color to be obtained. The local sampler

relies on two core subroutines:

• Resolve(𝑡), which takes as input a timestamp 𝑡 ≤ 0, and returns the outcome of the update at

time 𝑡 (i.e., the color to which the vertex is updated);

• Check(𝑡, 𝑐), which takes as input a timestamp 𝑡 ≤ 0 as well as a color 𝑐 ∈ [𝑞], and determines

whether the outcome of the update at time 𝑡 equals 𝑐;

Our local sampler for 𝑞-colorings is formally described in Algorithm 6.

Algorithm 6: LocalSample(Λ;𝑀, 𝐿)
Input: A 𝑞-coloring instance 𝐺 = (𝑉, 𝐸), a subset of variables Λ ⊆ 𝑉 .

Output: A random configuration 𝑋 ∈ [𝑞]Λ.

Global variables: Two mappings 𝑀 : Z→ [𝑞] ∪ {⊥}, 𝐿 : Z→ 2[𝑞] .
1 𝑋 ← ∅, 𝑀 ←⊥Z, 𝐿 ← [𝑞]Z;
2 forall 𝑣 ∈ Λ do
3 𝑋 (𝑣) ← Resolve(pred0(𝑣);𝑀, 𝐿);
4 return 𝑋 ;

In Algorithm 6, two global mappings, 𝑀 and 𝐿, are maintained for memoization to ensure the

consistency of the algorithm. Specifically, 𝑀 (𝑡) stores the resolved values of updates at each time 𝑡,

and 𝐿 (𝑡) stores the remaining set of available colors for unresolved updates at each time 𝑡.

We now formally present the two core procedures, Resolve(𝑡) and Check(𝑡, 𝑐), which underpin

our construction of the local sampler. Similar to the case of spin systems with soft constraints, these

procedures are recursively defined, making calls to themselves on earlier timestamps. To facilitate

their definition, we adopt a variant of the abstraction for local sampling procedures, resembling the

EvaluateO (𝑣) introduced in Definition 3.1, extended to allow access to partial information.

Definition 5.2 (local sampling procedures with access to partial information). For each vertex 𝑣 ∈ 𝑉
and color 𝑐 ∈ [𝑞], we define the procedures EvaluateO (𝑣) and EvaluateO (𝑣, 𝑐), which make oracle

queries to:

• O(𝑢), which consistently returns a value 𝑐𝑢 ∈ [𝑞] for each neighbor 𝑢 ∈ 𝑁 (𝑣);
• O(𝑢, 𝑐), which consistently returns a binary value 𝑥𝑢,𝑐 ∈ {0, 1} for each 𝑢 ∈ 𝑁 (𝑣) and 𝑐 ∈ [𝑞],

such that 𝑥𝑢,𝑐 = 1 if and only if 𝑐𝑢 = 𝑐.

In addition, since local sampling steps require knowledge of the set of currently available colors, finite

slices of the global mapping 𝐿 may be passed by reference to EvaluateO (𝑣) and EvaluateO (𝑣, 𝑐).
16

We remark that Definition 5.2 differs from the marginal sampling oracles in Definition 3.1 as it imposes

no requirement on the distribution of the outcomes produced by EvaluateO (𝑣) and EvaluateO (𝑣, 𝑐).
The procedures Resolve(𝑡) and Check(𝑡, 𝑐) are detailed in Algorithms 7 and 8, respectively.

The procedure Resolve(𝑡) first checks whether the update at time 𝑡 has already been resolved, and if

not, invokes EvaluateO (𝑣) to resolve it, passing the list of available colors 𝐿 (𝑡) by reference. Similarly,

the procedure Check(𝑡, 𝑐) performs a series of preliminary checks before invoking EvaluateO (𝑣, 𝑐)
determine equality to 𝑐, also passing 𝐿 (𝑡) by reference and potentially updating 𝐿 (𝑡) at the end.

An important detail occurs in Lines 8 and 9 of Check(𝑡, 𝑐): if the size of the list 𝐿 (𝑡) falls below 50Δ,

the algorithm invokes Resolve(𝑡) to fully resolve the outcome at time 𝑡 rather than merely checking

equality to 𝑐. This mechanism ensures that the list size |𝐿 (𝑡) | remains above 50Δ whenever it is passed

to either EvaluateO (𝑣) or EvaluateO (𝑣, 𝑐) during the algorithm’s execution, assuming 𝑞 ≥ 50Δ.

Algorithm 7: Resolve(𝑡;𝑀, 𝐿)
Input: A 𝑞-coloring instance 𝐺 = (𝑉, 𝐸), a timestamp 𝑡 ∈ Z.

Output: A random configuration 𝑋 ∈ [𝑞]Λ.

Global variables: Two mappings 𝑀 : Z→ [𝑞] ∪ {⊥}, 𝐿 : Z→ 2[𝑞] .
1 if 𝑀 (𝑡) ≠⊥ then return 𝑀 (𝑡); // check if the outcome is already resolved

2 𝑀 (𝑡) ← EvaluateO (𝑣𝑖 (𝑡) ; 𝐿 (𝑡)), with

• O(𝑢) replaced by Resolve(pred𝑡 (𝑢);𝑀, 𝐿) for each 𝑢 ∈ 𝑁 (𝑣𝑖 (𝑡));
• O(𝑢, 𝑐) replaced by Check(pred𝑡 (𝑢), 𝑐;𝑀, 𝐿) for each 𝑢 ∈ 𝑁 (𝑣𝑖 (𝑡));

3 return 𝑀 (𝑡);

Algorithm 8: Check(𝑡, 𝑐;𝑀, 𝐿)
Input: A 𝑞-coloring instance 𝐺 = (𝑉, 𝐸), a timestamp 𝑡 ∈ Z, a color 𝑐 ∈ [𝑞].
Output: A binary value 𝑥 ∈ {0, 1}.
Global variables: Two mappings 𝑀 : Z→ [𝑞] ∪ {⊥}, 𝐿 : Z→ 2[𝑞] .

1 if 𝑀 (𝑡) ≠⊥ then // check if the outcome is already resolved

2 if 𝑀 (𝑡) = 𝑐 then
3 return 1;

4 else
5 return 0;

6 if 𝑐 ∉ 𝐿 (𝑡) then // check if 𝑐 is already not available

7 return 0;

8 if |𝐿 (𝑡) | ≤ 50Δ then // resolve the full outcome instead when |𝐿 (𝑡) | ≤ 50Δ
9 Resolve(𝑡;𝑀, 𝐿);

10 𝑥 ← EvaluateO (𝑣𝑖 (𝑡) , 𝑐; 𝐿 (𝑡)), with

• O(𝑢) replaced by Resolve(pred𝑡 (𝑢);𝑀, 𝐿) for each 𝑢 ∈ 𝑁 (𝑣𝑖 (𝑡));
• O(𝑢, 𝑐) replaced by Check(pred𝑡 (𝑢), 𝑐;𝑀, 𝐿) for each 𝑢 ∈ 𝑁 (𝑣𝑖 (𝑡));

11 if 𝑥 = 1 then
12 𝑀 (𝑡) ← 𝑐;

13 else
14 𝐿 (𝑡) ← 𝐿 (𝑡) \ {𝑐};
15 return 𝑥;

We now present our specific construction of local sampling procedures for 𝑞-colorings. To fully

evaluate a specific outcome of the update and realize EvaluateO (𝑣; 𝐿), we employ the strategy described

earlier. Let 𝑆 = {O(𝑢) | 𝑢 ∈ 𝑁 (𝑣)}. To obtain a uniform sample from 𝐿 \ 𝑆, we repeatedly select a color

17

𝑐 ∈ 𝐿 uniformly at random and check whether 𝑐 ∈ 𝑆 by querying the oracle O(𝑢, 𝑐) for each 𝑢 ∈ 𝑁 (𝑣).
This procedure is detailed in Algorithm 9.

Algorithm 9: EvaluateO (𝑣; 𝐿)
Input: A 𝑞-coloring instance 𝐺 = (𝑉, 𝐸), a variable 𝑣 ∈ 𝑉 , and a list of available colors 𝐿 ⊆ [𝑞],

with the promise that |𝐿 | ≥ 50Δ.

Output: A value 𝑐 ∈ [𝑞].
Oracle access: O(𝑢) for each 𝑢 ∈ 𝑁 (𝑣) and O(𝑢, 𝑐) for each 𝑢 ∈ 𝑁 (𝑣) and 𝑐 ∈ [𝑞].
Global variables: a list of available colors 𝐿 ⊆ [𝑞], with the promise that 𝑐 ∉ 𝐿 and |𝐿 | ≥ 50Δ.

1 while True do
2 choose 𝑐 ∈ 𝐿 uniformly at random;

3 if O(𝑢, 𝑐) = 0 for each 𝑢 ∈ 𝑁 (𝑣) then
4 return 𝑐;
5 𝐿 ← 𝐿 \ {𝑐};

To determine whether the outcome equals a specific color 𝑐 and realize EvaluateO (𝑣, 𝑐; 𝐿), we

leverage the observation that when the size of the available color list satisfies |𝐿 | ≥ 2Δ ≥ 2|𝑆 |, the

probability that a uniform sample from 𝐿 \ 𝑆 equals 𝑐 is small. This motivates the following strategy to

simulate a coin that always returns 0 when 𝑐 ∈ 𝑆, and when 𝑐 ∉ 𝑆, returns 1 with probability 1/|𝐿 \ 𝑆 |
and 0 otherwise:

• With probability 1 − 1
|𝐿 |/2 , return 0 directly;

• Otherwise:

– If 𝑐 ∈ 𝑆, return 0;

– Otherwise, return 0 with probability
|𝐿 |/2
|𝐿\𝑆 | , and return 1 otherwise.

When the first step does not immediately return 0, we query O(𝑢, 𝑐) for each 𝑢 ∈ 𝑁 (𝑣) to check whether

𝑐 ∈ 𝑆. If 𝑐 ∉ 𝑆, a challenge arises: the set 𝑆 is unknown to the algorithm, so we cannot directly simulate

a coin with success probability
|𝐿 |/2
|𝐿\𝑆 | . While one could retrieve 𝑆 by querying O(𝑢) for every neighbor

𝑢 ∈ 𝑁 (𝑣), this incurs a prohibitive number of recursive calls. Fortunately, we can efficiently simulate a

coin with success probability
|𝐿\𝑆 |
|𝐿 | using the following procedure:

• Choose a color 𝑐 ∈ 𝐿 uniformly at random.

• Determine whether 𝑐 ∈ 𝑆: query O(𝑢, 𝑐) for all 𝑢 ∈ 𝑁 (𝑣); if any query returns 1, output 0;

otherwise, output 1.

Moreover, given access to such a
|𝐿\𝑆 |
|𝐿 | -coin, we can simulate a coin with success probability

|𝐿 |/2
|𝐿\𝑆 | by

solving an instance of the Bernoulli factory problem [VN51]. Specifically, we employ a Bernoulli factory

algorithm for division: given access to a coin with success probability 𝑝 =
|𝐿\𝑆 |
|𝐿 | , we simulate a coin

with success probability
1
2𝑝 .

Our complete procedure for checking whether the outcome equals a specific color 𝑐 is described in

Algorithm 10, while the subroutine for simulating a
|𝐿\𝑆 |
|𝐿 | -probability coin is described in Algorithm 11.

Remark 5.3 (implementation of the algorithm). Note that our local sampler for 𝑞-colorings (Algorithms

6–11) involves a considerable number of recursive calls. To implement this algorithm efficiently, all

recursive calls to Resolve(𝑡) and Check(𝑡, 𝑐) are managed using a stack. At each step, the algorithm

pops the call at the top of the stack — either Resolve(𝑡) or Check(𝑡, 𝑐) — executes it, updates the values

of 𝐿 (𝑡) and 𝑀 (𝑡) in the global data structure if needed, and pushes any new recursive calls onto the

stack. Since each call to Resolve(𝑡) or Check(𝑡, 𝑐) only recurses on strictly smaller timestamps 𝑡′ < 𝑡,
the recursions will be executed correctly as above.

The Bernoulli factory for division used in Algorithm 10 is achieved by a combination of existing

constructions [NP05, Hub16, Mor21]. Here, we present its correctness and efficiency.

18

Algorithm 10: EvaluateO (𝑣, 𝑐; 𝐿)
Input: A 𝑞-coloring instance 𝐺 = (𝑉, 𝐸), a variable 𝑣 ∈ 𝑉 , a color 𝑐 ∈ [𝑞]
Output: A binary value 𝑥 ∈ {0, 1}.
Oracle access: O(𝑢) for each 𝑢 ∈ 𝑁 (𝑣) and O(𝑢, 𝑐) for each 𝑢 ∈ 𝑁 (𝑣) and 𝑐 ∈ [𝑞].
Global variables: a list of available colors 𝐿 ⊆ [𝑞], with the promise that 𝑐 ∉ 𝐿 and |𝐿 | ≥ 50Δ.

1 with probability 1 − 1
|𝐿 |/2 return 0;

2 forall 𝑢 ∈ 𝑁 (𝑣) do
3 If O(𝑢, 𝑐) = 1 return 0;

4 let C be an
|𝐿\𝑆 |
|𝐿 | -probability coin where 𝑆 = {O(𝑢) | 𝑢 ∈ 𝑁 (𝑣)}, generated as in Algorithm 11;

5 with probability
|𝐿 |/2
|𝐿\𝑆 | return 1, otherwise return 0, where the probability

|𝐿 |/2
|𝐿\𝑆 | is generated

using the Bernoulli factory algorithm for division [Mor21], given access to C.

Algorithm 11: access to an |𝐿 \ 𝑆 |/|𝐿 |-probability coin

Input: A 𝑞-coloring instance 𝐺 = (𝑉, 𝐸), a variable 𝑣 ∈ 𝑉 , a color 𝑐 ∈ [𝑞]
Output: A binary value 𝑥 ∈ {0, 1}.
Oracle access: O(𝑢) for each 𝑢 ∈ 𝑁 (𝑣) and O(𝑢, 𝑐) for each 𝑢 ∈ 𝑁 (𝑣) and 𝑐 ∈ [𝑞].
Global variables: A list of available colors 𝐿 ⊆ [𝑞].

1 choose 𝑐0 ∈ 𝐿 uniformly at random;

2 forall 𝑢 ∈ 𝑁 (𝑣) do
3 if O(𝑢, 𝑐0) = 1 then return 0;

4 return 1;

Lemma 5.4 (correctness and efficiency of the Bernoulli factory algorithm). There is a Bernoulli factory
algorithm accessing a 𝜉-coin with the promise that 1

2 + 𝜁 ≤ 𝜉 ≤ 1 for some 𝜁 > 0, terminates with
probability 1, returns 1 with probability 1

2𝜉 and returns 0 otherwise. Moreover, the expected number of
calls to the 𝜉-coin is at most 9.5𝜉−1𝜁−1.

The proof of Lemma 5.4 will be presented in Appendix A, where we also present the explicit con-

struction of the Bernoulli factory algorithm for division.

5.2. Correctness of the local sampler. We now proceed to prove the correctness of the local sampler,

stated in Lemma 5.5. Here, we establish only the conditional correctness under the assumption that the

local sampler always terminates. The proof of termination, along with the efficiency analysis of the

algorithm, is presented in the next subsection.

Lemma 5.5 (conditional correctness of the local sampler for 𝑞-colorings). Suppose that the input 𝑞-
coloring instance 𝐺 = (𝑉, 𝐸) satisfies 𝑞 ≥ 65Δ where Δ ≥ 1 is the maximum degree of 𝐺 . For any Λ ⊆ 𝑉 ,
suppose that LocalSample(Λ) terminates almost surely, then the output 𝑋 of LocalSample(Λ) follows the
law 𝜇Λ, where 𝜇 denotes the uniform distribution over all proper 𝑞-colorings of 𝐺 .

To prove Lemma 5.5, we first establish the correctness of the local procedures EvaluateO (𝑣; 𝐿) and

EvaluateO (𝑣, 𝑐; 𝐿).

Lemma 5.6 (local correctness of EvaluateO (𝑣; 𝐿) and EvaluateO (𝑣, 𝑐; 𝐿)). Given as input a 𝑞-coloring
instance 𝐺 = (𝑉, 𝐸). For any vertex 𝑣 ∈ 𝑉 , color 𝑐 ∈ [𝑞] and a list of available colors 𝐿 ⊆ [𝑞] satisfying
|𝐿 | ≥ 50Δ where Δ ≥ 1 is the maximum degree of 𝐺 , assuming O(𝑢) for each 𝑢 ∈ 𝑁 (𝑣) and O(𝑢, 𝑐) for
each 𝑢 ∈ 𝑁 (𝑣) and 𝑐 ∈ [𝑞] as specified in Definition 5.2 and let 𝑆 = {O(𝑢) | 𝑢 ∈ 𝑁 (𝑣)}:

(1) EvaluateO (𝑣; 𝐿) returns a uniform sample from 𝐿 \ 𝑆;
(2) Evaluate𝑂 (𝑣, 𝑐; 𝐿):

• returns 0 if 𝑐 ∈ 𝑆;
• returns 1 with probability 1

|𝐿\𝑆 | and 0 with probability 1 − 1
|𝐿\𝑆 | otherwise.

19

Proof. For EvaluateO (𝑣; 𝐿), by |𝐿 | ≥ 50Δ, Lines 2-5 of Algorithm 9, and Definition 5.2, EvaluateO (𝑣; 𝐿)
always returns a value from 𝐿 \ 𝑆. Then Item 1 follows from the symmetry of all colors in 𝐿 \ 𝑆.

It is direct that Algorithm 11 returns 0 when 𝑐 ∈ 𝑆. Also, according to that |𝐿 | ≥ 50Δ and the

correctness guarantee of the Bernoulli factory algorithm (Lemma 5.4), Algorithm 11 indeed returns 1
with probability

1
|𝐿\𝑆 | and 0 with the remaining probability when 𝑐 ∉ 𝑆. Item 2 then directly follows. □

Similar to the proof of correctness for our local sampler for spin systems with soft constraints, we

introduce a finite-time variant of Algorithm 6 for any finite 𝑇 > 0, denoted as Algorithm 12. This

algorithm locally reconstructs the final state 𝑋0 of P(𝑇). Still, the only difference between Algorithms

6 and 12 lies in the initialization of the mapping 𝑀 .

Algorithm 12: LocalSample𝑇 (Λ;𝑀, 𝐿) (for 𝑞-colorings)

Input: a 𝑞-coloring instance 𝐺 = (𝑉, 𝐸), a subset of variables Λ ⊆ 𝑉
Output: A random configuration 𝑋 ∈ [𝑞]Λ
Global variables: Two mappings 𝑀 : Z→ [𝑞] ∪ {⊥}, 𝐿 : Z→ 2[𝑞] .

1 𝑋 ← ∅, 𝑀 (𝑡) ← 𝑋−𝑇 (𝑣𝑖 (𝑡)) for each 𝑡 ≤ −𝑇, 𝑀 (𝑡) ←⊥ for each 𝑡 > −𝑇 , 𝐿 ← [𝑞]Z;
2 forall 𝑣 ∈ Λ do
3 𝑋 (𝑣) ← Resolve(pred0(𝑣);𝑀, 𝐿);
4 return 𝑋 ;

We then present the crucial lemma for the correctness of the finite-time version of the algorithm. For

any finite 𝑇 > 0 and −𝑇 ≤ 𝑡 ≤ 0, we let 𝑋𝑇,𝑡 be the state of 𝑋𝑡 in P(𝑇). The following lemma shows

LocalSample𝑇 indeed simulates P(𝑇) for 𝑞-colorings.

Lemma 5.7. Suppose that the input 𝑞-coloring instance 𝐺 = (𝑉, 𝐸) satisfies 𝑞 ≥ 50Δ where Δ ≥ 1 is the
maximum degree of 𝐺 . For any Λ ⊆ 𝑉 , the value returned by LocalSample𝑇 (Λ) is identically distributed
as 𝑋𝑇,0(Λ).

Proof. We claim that after the initialization step (Line 1) of Algorithm 12, it is possible to couple the

randomness of the algorithm and the process (𝑋𝑡)−𝑇≤𝑡≤0 in such a way that the following two invariants

hold for any 𝑇 ≥ 0:

(1) Whenever Check(𝑡, 𝑐) is called for some timestamp −𝑇 ≤ 𝑡 ≤ 0 and some color 𝑐 ∈ [𝑞], the

outcome is 1 if and only if 𝑋𝑡 (𝑣𝑖 (𝑡)) = 𝑐, where we define 𝑋𝑡 = 𝑋−𝑇 for all 𝑡 ≤ −𝑇 ;

(2) Whenever Resolve(𝑡) is called for some timestamp −𝑇 ≤ 𝑡 ≤ 0, its output is 𝑋𝑡 (𝑣𝑖 (𝑡)), where

again 𝑋𝑡 = 𝑋−𝑇 for all 𝑡 ≤ −𝑇 .

Once such a coupling is established, the lemma immediately follows.

We then verify the existence of this coupling by induction on the length of the process, 𝑇 .

The base case is when 𝑇 = 0, and the invariants hold by construction due to the initialization of the

mapping 𝑀 in Algorithm 6.

Assume the claim holds for some 𝑇 − 1 ≥ 0. Consider the case for 𝑇 . We rely on two facts:

• The process (𝑋𝑡)−𝑇≤𝑡≤0 forms a Markov chain.

• Any recursive call to Resolve(𝑡) or Check(𝑡, 𝑐) only involves timestamps 𝑡′ < 𝑡.

These ensure that we can apply the induction hypothesis to couple the randomness for all timestamps

strictly less than 𝑡 = 0.

We now extend the coupling to the timestamp 𝑡 = 0. Let 𝑣 = 𝑣𝑖 (0) , and let 𝑆 =
⋃

𝑢∈𝑁 (𝑣)
𝑋0(𝑣𝑖 (pred𝑢 (0)),

i.e., 𝑆 is the set of colors assigned to the neighbors of 𝑣 in the configuration 𝑋0. By the transition rule

of the Markov chain, the value 𝑋0(𝑣) is then sampled uniformly from [𝑞] \ 𝑆.

Under the inductive coupling at times 𝑡 < 0, the oracle values O(𝑢) returned in any call to Check(0, 𝑐)
or Resolve(0) are exactly 𝑋0(𝑣𝑖 (pred𝑢 (0))). Thus, we can extend the coupling to 𝑡 = 0 as follows.

Maintain a local list 𝐿′, initially equal to [𝑞], and ensure that 𝐿′ and the global list 𝐿 (0) used in the

algorithm remain synchronized throughout (meaning the invariant 𝐿′ = 𝐿 (0) always holds):

• Whenever Resolve(0) is called:

20

– If 𝑀 (0) ≠⊥, the output is deterministic and no further randomness needs to be coupled;

– Otherwise, by 𝑞 ≥ 50Δ and Lines 8–9 of Check(𝑡, 𝑐), we have |𝐿 (0) | ≥ 50Δ. By Item 1 of

Lemma 5.6, we can couple the randomness so that the outcome of Resolve(0) is exactly

𝑋0(𝑣𝑖 (pred𝑢 (0))).
• Whenever Check(0, 𝑐) is called for some 𝑐 ∈ [𝑞]:

– If 𝑀 (0) ≠⊥ or 𝑐 ∉ 𝐿 (0), the output is deterministic and no further randomness needs to be

coupled;

– Otherwise, if |𝐿 (0) | ≤ 50Δ, Resolve(0) is called instead, and this reduces to the case we

already proved;

– Otherwise we have |𝐿 (0) | ≥ 50Δ. By Item 2 of Lemma 5.6, we can couple the randomness

so that:

∗ If Check(0, 𝑐) returns 1, let 𝑋0(𝑣𝑖 (pred𝑢 (0))) = 𝑐 (both happens with probability

1
|𝐿′\𝑆 | =

1
|𝐿 (0)\𝑆 |);

∗ Otherwise, remove 𝑐 from 𝐿′ (both happens with probability 1− 1
|𝐿′\𝑆 | = 1− 1

|𝐿 (0)\𝑆 |).
As 𝑐 is also removed from 𝐿 (0) in this case, 𝐿′ and 𝐿 (0) stay the same.

This completes the construction of the coupling, thereby proving the lemma. □

Now, we are finally ready to prove Lemma 5.5.

Proof of Lemma 5.5. For any𝑇 ≥ 0, we couple the randomness of LocalSample(Λ)with LocalSample𝑇 (Λ)
by pre-sampling all random variables used within Resolve(𝑡) and Check(𝑡, 𝑐) for each 𝑡 ≤ 0. Here, the

coupling fails if and only if recursion reaches some timestamp 𝑡′ ≤ −𝑇 . Note that when LocalSample𝑇 (Λ)
terminates almost surely, the probability of any recursion within LocalSample𝑇 (Λ) reaching some

timestamp 𝑡′ ≤ −𝑇 must tend to 0 as 𝑇 tends to infinity, meaning the coupling above gives us

(13) lim
𝑇→∞

𝑑TV
(
LocalSample(Λ), LocalSample𝑇 (Λ)

)
= 0.

Note that when 𝑞 ≥ Δ + 1, we have P(𝑇) is irreducible and Theorem 2.1 implies that

(14) lim
𝑇→∞

𝑑TV
(
𝜇Λ, 𝑋𝑇,0(Λ)

)
= 0,

Therefore,

𝑑TV (𝜇Λ, LocalSample(Λ))
≤ lim sup

𝑇→∞
𝑑TV

(
𝜇Λ, LocalSample𝑇 (Λ)

)
(by triangle inequality)

+ lim sup
𝑇→∞

𝑑TV
(
LocalSample𝑇 (Λ), LocalSample(Λ)

)
= lim sup

𝑇→∞
𝑑TV

(
𝜇Λ, LocalSample𝑇 (Λ)

)
(by (13))

≤ lim sup
𝑇→∞

𝑑TV
(
𝜇Λ, 𝑋𝑇,0(Λ)

)
+ lim sup

𝑇→∞
𝑑TV

(
𝑋𝑇,0(Λ), LocalSample𝑇 (Λ)

)
(by triangle inequality)

= lim sup
𝑇→∞

𝑑TV
(
𝜇Λ, 𝑋𝑇,0(Λ)

)
(by Lemma 5.7)

= 0,(by (14))

concluding the proof of the lemma. □

5.3. Efficiency of the local sampler. Now, we proceed to proving the efficiency of our local sampler

for 𝑞-colorings. Our proof is done by designing a carefully-chosen potential function that relates to the

state of the algorithm, and showing that such a potential function decays in expectation at each step as

the algorithm evolves.

Lemma 5.8 (efficiency of the local sampler for 𝑞-colorings). Suppose that the input 𝑞-coloring instance
𝐺 = (𝑉, 𝐸) satisfies 𝑞 ≥ 65Δ where Δ ≥ 1 is the maximum degree of 𝐺. Then for any subset Λ ⊆ 𝑉 ,
LocalSample(Λ) terminates almost surely within expected time |Λ| · Δ2𝑞.

Proof. Following the proof of Lemma 5.7, we can couple the randomness of the algorithm and (𝑋𝑡)𝑡≤0
in such a way that the following two invariants hold:

21

(1) Whenever Check(𝑡, 𝑐) is called for some timestamp 𝑡 ≤ 0, some color 𝑐 ∈ [𝑞] and terminates,
the outcome is 1 if and only if 𝑋𝑡 (𝑣𝑖 (𝑡)) = 𝑐;

(2) Whenever Resolve(𝑡) is called for some timestamp 𝑡 ≤ 0 and terminates, its output is 𝑋𝑡 (𝑣𝑖 (𝑡)).
Note that here (𝑋𝑡)𝑡≤0 is viewed as the limiting process of (𝑋𝑡)−𝑇≤𝑡≤0 as 𝑇 →∞. When 𝑞 ≥ Δ + 1,

the Markov chain P(𝑇) is ergodic, and the distribution specified by (𝑋𝑡)𝑡≤0 projecting onto any finite

subset of timestamps is always well-defined.

We then strengthen the lemma and prove that under any realization of the outcome of updates

in (𝑋𝑡)𝑡≤0, the desired result that for any Λ ⊆ 𝑉 , LocalSample(Λ) terminates almost surely within

expected time |Λ| · Δ2𝑞 always holds.

Note that the state Π of the algorithm LocalSample(Λ) can be defined by:

• the state of the global data structures 𝑀 and 𝐿, and

• the current stack of recursive calls to Resolve(𝑡) and Check(𝑡, 𝑐).
We introduce a potential function to track the state of the algorithm.

Definition 5.9 (potential function associated with the state of the algorithm). Let Φ = Φ(Π) ∈ R be

the potential function, defined as follows. Initially, Φ = 0.

• For each distinct Resolve(𝑡) call such that 𝑀 (𝑡) =⊥ in the current stack of the algorithm, update

Φ← Φ + 𝐶1Δ.

• For each distinct Check(𝑡, 𝑐) call such that 𝑀 (𝑡) =⊥ and 𝑐 ∈ 𝐿 (𝑡) in the current stack of the

algorithm, update Φ← Φ + 𝐶2.

• For each 𝑡 ∈ Z such that 𝑀 (𝑡) =⊥ and there is currently no Resolve(𝑡) call in the stack, update

Φ← Φ + 𝐶3 · (65Δ − |𝐿 |); that is, add 𝐶3 to the potential function for each removed color in

the list of an yet undetermined timestamp.

Here, 𝐶1, 𝐶2, 𝐶3 are universal constants to be determined later in this proof.

At the start of the algorithm, for each 𝑣 ∈ Λ, the only call is Resolve(pred0(𝑣)). Thus, the potential

function is initially set to Φ = |Λ| · 𝐶1Δ, as given by Definition 5.9. We will show that Φ contracts in

expectation throughout the algorithm’s execution.

Without loss of generality, we only consider active calls of the form:

• Resolve(𝑡) such that 𝑀 (𝑡) =⊥;

• Check(𝑡, 𝑐) such that 𝑀 (𝑡) =⊥ and 𝑐 ∈ 𝐿 (𝑡),
as the remaining calls directly terminate by memoization, and we attribute the running time of such

calls to the procedure that incurred them. The algorithm terminates when there are no active Resolve(𝑡)
or Check(𝑡, 𝑐) calls remaining in the stack.

We also decompose the execution of the algorithm into steps, where in each step, we reveal certain

random choices made by the algorithm, and the order of these random choices may differ from the

execution order of the algorithm. We analyze the expected change of Φ in several cases.

• Suppose the top of the stack is a Resolve(𝑡) call for some 𝑡 ∈ Z such that 𝑀 (𝑡) =⊥. This

call proceeds by calling EvaluateO (𝑣𝑖 (𝑡) ; 𝐿 (𝑡)). We define each iteration of the while loop in

EvaluateO (𝑣𝑖 (𝑡) ; 𝐿 (𝑡)) as a single step, and we track the expected change in Φ after each step.

Since |𝐿 | = |𝐿 (𝑡) | ≥ 50Δ at the beginning, and |𝑆𝑡 | has size at most Δ, we always have |𝐿 | ≥
49Δ at the start of any iteration. Therefore, the condition in Line 3 of EvaluateO (𝑣𝑖 (𝑡) ; 𝐿 (𝑡)) is

satisfied with probability at least
49
50 , regardless of the realization of 𝑆𝑡 . This allows the number

of iterations to be stochastically dominated by Geo(4950).
Hence, in each step:

– Δ calls to Check(𝑡, 𝑐) are added to the stack, increasing the potential function by 𝐶2Δ.

– With probability at least
49
50 , the Resolve(𝑡) call is removed from the stack, decreasing the

potential function by 𝐶1Δ.

We remark that during these steps, the potential function is not affected by the change in the

size of 𝐿 (𝑡) as Resolve(𝑡) is already in the stack of the algorithm.

22

Therefore, the expected change in the potential function per step is at most:

𝐶2Δ −
49

50
· 𝐶1Δ.

• Suppose the top of the stack is a Check(𝑡, 𝑐) call for some 𝑡 ∈ Z and 𝑐 ∈ [𝑞] such that 𝑀 (𝑡) =⊥
and 𝑐 ∈ 𝐿 (𝑡).
– If |𝐿 (𝑡) | = 50Δ, then the Check(𝑡, 𝑐) call is removed from the stack, decreasing the potential

function by 𝐶2.

∗ If there currently is a Resolve(𝑡) call in the stack, then the total change in the potential

function is simply −𝐶2.

∗ Otherwise, a newResolve(𝑡) call is added to the stack, increasing the potential function

by 𝐶1Δ. Additionally, since the removed color in the list 𝐿 (𝑡) no longer contributes to

the potential function when this new Resolve(𝑡) call is added, the potential function

further decreases by 𝐶3 · (65Δ − 50Δ) = 15Δ · 𝐶3. Therefore, the total change in the

potential function is:

𝐶1Δ − 𝐶2 − 15Δ · 𝐶3.

– Otherwise, we assume 𝑀 (𝑡) ≠⊥, 𝑐 ∈ 𝐿 (𝑡) and that |𝐿 (𝑡) | > 50Δ. This call proceeds by

calling EvaluateO (𝑣𝑖 (𝑡) , 𝑐; 𝐿 (𝑡)). According to EvaluateO (𝑣𝑖 (𝑡) , 𝑐; 𝐿 (𝑡)):
∗ With probability 1 − 2

|𝐿 | ≥ 1 − 1
25Δ , EvaluateO (𝑣𝑖 (𝑡) , 𝑐; 𝐿 (𝑡)) directly terminates and

returns 0. In this case, the Check(𝑡, 𝑐) call is removed from the stack, decreasing the

potential function by 𝐶2. Also, due to Line 14 of Check(𝑡, 𝑐), 𝑐 is removed from 𝐿 (𝑡),
increasing the potential function by at most 𝐶3. Hence, in this case, the change in the

potential function is at most 𝐶3 − 𝐶2.

∗ With probability
2
|𝐿 | ≤

1
25Δ , EvaluateO (𝑣𝑖 (𝑡) , 𝑐; 𝐿 (𝑡)) first adds at most Δ recursive

calls of the form Check(𝑡′, 𝑐′), then uses a Bernoulli factory algorithm for division to

return 1 with probability
|𝐿 |/2
|𝐿\𝑆𝑡 | , accessing Algorithm 11 as an |𝐿 \ 𝑆𝑡 |/|𝐿 |-probability

coin, where 𝑆𝑡 is defined in (12). Note that after fixing the realization of (𝑋𝑡)𝑡≤0, the

outcome of Algorithm 11 is solely determined by Line 1, which are clearly independent

of the randomness within recursive calls to Line 1. Therefore, we can first determine

the randomness within this Bernoulli factory algorithm and consider this as a step.

According to Lemma 5.4, the expected number of calls to Algorithm 11 is at most 21.

Each such call may in turn generate up to Δ recursive calls of the form Check(𝑡′, 𝑐′),
with each recursive call contributing at most𝐶2 to the potential function. At the same

time, the original Check(𝑡, 𝑐) call is removed from the stack, decreasing the potential

function by 𝐶2; and, due to Line 14, the color 𝑐 is removed from 𝐿 (𝑡), increasing the

potential function by 𝐶3. Thus, the total expected change in the potential function in

this case is at most:

(22Δ − 1)𝐶2 + 𝐶3.

Moreover, since at most Δ𝑞 distinct recursive calls of the form Check(𝑡′, 𝑐′) can be

generated where 𝑡′ = pred𝑢 (𝑡) for some 𝑢 ∈ 𝑁 (𝑣𝑖 (𝑡)), the maximum change in the

potential function is at most:

(Δ𝑞 − 1)𝐶2 + 𝐶3.

Summarizing, in this case, the expected change in the potential function per step is at most:(
1 − 1

25Δ

)
· (𝐶3 − 𝐶2) +

1

25Δ
· ((22Δ − 1)𝐶2 + 𝐶3) = 𝐶3 −

3𝐶2

25
.

We then set the constants as follows:

𝐶1 = 30, 𝐶2 = 25, 𝐶3 = 2.

In this case, it is easy to see that the expected change of the potential function after each step is at

most −1. Let Φ0,Φ1, . . . be the random sequence of the potential function after the 𝑖-th step of the

23

algorithm. Define Ψ𝑖 = Φ𝑖 + 𝑖 for each 𝑖 ≥ 0. By the previous analysis, we have {Ψ𝑖}𝑖≥0 forms a

supermartingale with each absolute increment |Ψ𝑖+1 −Ψ𝑖 | upper bounded by some 𝐾 = poly(𝑞,Δ). Let

𝜏 = min{𝑖 > 0 | Φ𝑖 = 0} = min{𝑖 > 0 | Ψ𝑖 = 𝑖} be a stopping time. By the Azuma-Hoeffding inequality,

we have for each fixed 𝜀 > 0,

Pr [𝜏 > (1 + 𝜀)30|Λ| · Δ] ≤ Pr
[
Ψ(1+𝜀)30 |Λ | ·Δ > Ψ0 + 30𝜀 |Λ| · Δ

]
≤ exp

(
−30𝜀2 |Λ|Δ
(1 + 𝜀)𝐾2

)
,

from which we can conclude that E [𝜏] < ∞, allowing us to apply Doob’s optional stopping theorem:

30|Λ| · Δ = E [Ψ0] ≥ E [Ψ𝜏] = E [𝜏] ,
meaning that the algorithm executes at most 30|Λ| ·Δ steps in expectation. Consequently, by Lemma 5.4,

the expected running time of the algorithm is bounded by 𝑂 (|Λ| · Δ𝑞2). □

Lemmas 5.6 and 5.8 together establish Theorem 1.4. For Theorem 1.7, observe that all algorithms and

proofs in this section naturally extend to the setting of list colorings, where each vertex 𝑣 ∈ 𝑉 has its

own color list 𝑄𝑣 satisfying |𝑄𝑣 | ≥ 65Δ. By applying the same argument as in the proof of Theorem 1.6,

Theorem 1.7 follows.

6. Conclusions and Open Problems

In this paper, we design new local samplers that go beyond the use of the local uniformity property

by generalizing and refining the framework of backward deduction of Markov chains, i.e., the “Coupling

Towards The Past” (CTTP) method. Specifically, we design the first local samplers for both spin systems

with soft constraints in near-critical regimes, and uniform 𝑞-coloring under the near-critical condition

of 𝑞 = 𝑂 (Δ) where Δ is the maximum degree of the graph. The proposed local samplers are perfect,

achieve near-linear runtime, and admit direct applications to local algorithms for probabilistic inference

within the same parameter regimes.

We leave the following open problems and directions for future work:

• While our local sampler performs well in near-critical regimes for spin systems using backward

deduction of Glauber dynamics, it has been shown that forward simulation of Glauber dynamics

mixes rapidly for the Ising model up to the uniqueness threshold. Can we improve the analysis

of our current algorithm, design new local samplers that are efficient up to this critical threshold,

or prove a lower bound showing that this is intractable for local samplers?

• Both the CTTP (Coupling Towards The Past) and the CFTP (Coupling From The Past) approaches

are based on grand coupling and can yield perfect sampling algorithms. However, the local

sampler via CTTP requires a more restrictive grand coupling that admits a local implementation.

For 𝑞-colorings, we show that CTTP with such a local grand coupling can indeed achieve the

𝑞 = 𝑂 (Δ) threshold; in particular, we establish 𝑞 ≥ 65Δ. In contrast, the best known result for

CFTP with a global grand coupling is 𝑞 ≥ (83 + 𝑜(1))Δ, as achieved in [JSS21], which attains

a better constant factor. This raises a natural question: can one obtain a local sampler that

matches or even surpasses the global grand coupling threshold?

• Local samplers, as introduced in [AJ22, FGW
+
23], have found a wide range of applications,

as discussed in the introduction. Our work further shows that local samplers can also imply

efficient local algorithms for probabilistic inference. We hope to see more applications of local

samplers, particularly in the design of distributed and parallel algorithms.

Acknowledgement

Chunyang would like to thank Jingcheng Liu and Yixiao Yu for pointing out Lubetzky and Sly’s

result, which analyzes the cutoff phenomenon of the Ising model in near-critical regimes.

24

References

[AFF
+
24] Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang. Approximate

Counting for Spin Systems in Sub-Quadratic Time. In ICALP, volume 297, pages 11:1–11:20.

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.

[AFG
+
25] Konrad Anand, Graham Freifeld, Heng Guo, Chunyang Wang, and Jiaheng Wang. Sink-free

orientations: a local sampler with applications, 2025. to appear in RANDOM 2025.

[AGPP23] Konrad Anand, Andreas Göbel, Marcus Pappik, and Will Perkins. Perfect sampling for hard

spheres from strong spatial mixing. In RANDOM, volume 275 of LIPIcs, pages 38:1–38:18.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[AJ22] Konrad Anand and Mark Jerrum. Perfect sampling in infinite spin systems via strong spatial

mixing. SIAM Journal on Computing, 51(4):1280–1295, 2022.

[AJK
+
22] Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong.

Entropic independence: optimal mixing of down-up random walks. In STOC, pages 1418–

1430. ACM, 2022.

[ALO20] Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-

dimensional expanders and applications to the hardcore model. In FOCS, pages 1319–1330.

IEEE, 2020.

[BC20] Siddharth Bhandari and Sayantan Chakraborty. Improved bounds for perfect sampling of

k-colorings in graphs. In STOC, pages 631–642, 2020.

[BPR22] Amartya Shankha Biswas, Edward Pyne, and Ronitt Rubinfeld. Local Access to Random

Walks. In ITCS, volume 215, pages 24:1–24:22. Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, 2022.

[BRY20] Amartya Shankha Biswas, Ronitt Rubinfeld, and Anak Yodpinyanee. Local access to huge

random objects through partial sampling. In ITCS. Schloss Dagstuhl-Leibniz-Zentrum für

Informatik, 2020.

[CDM
+
19] Sitan Chen, Michelle Delcourt, Ankur Moitra, Guillem Perarnau, and Luke Postle. Improved

bounds for randomly sampling colorings via linear programming. In SODA, page 2216–2234,

USA, 2019. SIAM.

[CE22] Yuansi Chen and Ronen Eldan. Localization schemes: A framework for proving mixing

bounds for markov chains (extended abstract). In FOCS, pages 110–122. IEEE, 2022.

[CFYZ21] Xiaoyu Chen, Weiming Feng, Yitong Yin, and Xinyuan Zhang. Rapid mixing of Glauber

dynamics via spectral independence for all degrees. In FOCS, pages 137–148, 2021.

[CFYZ22] Xiaoyu Chen, Weiming Feng, Yitong Yin, and Xinyuan Zhang. Optimal mixing for two-state

anti-ferromagnetic spin systems. In FOCS, pages 588–599. IEEE, 2022.

[CLV20] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Rapid mixing of Glauber dynamics up to

uniqueness via contraction. In FOCS, pages 1307–1318. IEEE, 2020.

[CLV21] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of Glauber dynamics: entropy

factorization via high-dimensional expansion. In STOC, pages 1537–1550. ACM, 2021.

[CV25] Charlie Carlson and Eric Vigoda. Flip dynamics for sampling colorings: Improving (11/6 —

𝜀) using a simple metric. In SODA, pages 2194–2212, 2025.

[DL93] Paul Dagum and Michael Luby. Approximating probabilistic inference in bayesian belief

networks is np-hard. Artif. Intell., 60(1):141–153, 1993.

[DL97] Paul Dagum and Michael Luby. An optimal approximation algorithm for bayesian inference.

Artif. Intell., 93(1–2):1–27, 1997.

[FGW
+
23] Weiming Feng, Heng Guo, Chunyang Wang, Jiaheng Wang, and Yitong Yin. Towards

derandomising Markov chain Monte Carlo. In FOCS, pages 1963–1990. IEEE, 2023.

[GŠV16] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition

function for the antiferromagnetic Ising and hard-core models. Combinatorics, Probability
and Computing, 25(04):500–559, 2016.

[Hub98] Mark Huber. Exact sampling and approximate counting techniques. In STOC, pages 31–40,

1998.

25

[Hub16] Mark Huber. Nearly optimal Bernoulli factories for linear functions. Combin. Probab.
Comput., 25(4):577–591, 2016.

[HWY22] Kun He, Chunyang Wang, and Yitong Yin. Sampling lovász local lemma for general con-

straint satisfaction solutions in near-linear time. In FOCS, pages 147–158. IEEE, 2022.

[HWY23] Kun He, Chunyang Wang, and Yitong Yin. Deterministic counting lovász local lemma

beyond linear programming. In SODA, pages 3388–3425. SIAM, 2023.

[Isi25] Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik, 31:253–258,

1925.

[Jer95] Mark Jerrum. A very simple algorithm for estimating the number of k-colorings of a

low-degree graph. Random Struct. Algorithms, 7(2):157–165, September 1995.

[JSS21] Vishesh Jain, Ashwin Sah, and Mehtaab Sawhney. Perfectly sampling k¿(8/3+o(1)) 𝛿-

colorings in graphs. In STOC, pages 1589–1600, 2021.

[LPW17] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times.
American Mathematical Society, Providence, RI, 2017.

[LS16] Eyal Lubetzky and Allan Sly. Information percolation and cutoff for the stochastic Ising

model. J. Amer. Math. Soc., 29(3):729–774, 2016.

[LS17] Eyal Lubetzky and Allan Sly. Universality of cutoff for the Ising model. The Annals of
Probability, 45(6A):3664 – 3696, 2017.

[Mor21] G. Morina. Extending the Bernoulli Factory to a Dice Enterprise. University of Warwick, 2021.

[MSW22] Peter Mörters, Christian Sohler, and Stefan Walzer. A Sublinear Local Access Implementation

for the Chinese Restaurant Process. In RANDOM, volume 245, pages 28:1–28:18. Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

[NP05] Şerban Nacu and Yuval Peres. Fast simulation of new coins from old. Ann. Appl. Probab.,
15(1A):93–115, 2005.

[PW96] James Gary Propp and David Bruce Wilson. Exact sampling with coupled markov chains

and applications to statistical mechanics. Random Structures & Algorithms, 9(1-2):223–252,

1996.

[SS14] Allan Sly and Nike Sun. Counting in two-spin models on 𝑑-regular graphs. Ann. Probab.,
42(6):2383–2416, 2014.

[Vig99] Eric Vigoda. Improved bounds for sampling colorings. In FOCS, pages 51–59, 1999.

[VN51] John Von Neumann. various techniques used in connection with random digits. Appl. Math
Ser, 12(36-38):3, 1951.

26

Appendix A. Bernoulli factory method for simulating probability

In this section, we explicitly provide the construction of the Bernoulli factory for division, and

formally prove Lemma 5.4.

For 𝜉 ∈ [0, 1] we denote by O𝜉 a coin (or oracle) that returns 1 (heads) with probability 𝜉, and 0
(tails) with probability 1 − 𝜉, independently on each call.

Our construction of the Bernoulli factory for division is based on the method from [Mor21], which

in turn builds on the subtraction Bernoulli factory from [NP05]. That construction is itself based on a

linear Bernoulli factory, for which we adopt the implementation from [Hub16].

We first introduce the linear Bernoulli factory, which transforms O𝜉 to O𝐶𝜉 for a 𝐶 > 1 with the

promise that 𝐶𝜉 ≤ 1. We adopt the construction of linear Bernoulli factory in [Hub16] described in

Algorithm 13. Its correctness and efficiency is guaranteed as follows.

Algorithm 13: LinearBF(O, 𝐶, 𝜁)[Hub16]

Input: a coin O = O𝜉 with unknown 𝜉 , 𝐶 > 1 and a slack 𝜁 > 0, with promise that 𝐶𝜉 ≤ 1 − 𝜁 ;

Output: a random value from O𝐶𝜉 ;

1 𝑘 ← 4.6/𝜁, 𝜁 ← min{𝜁, 0.644}, 𝑖 ← 1;

2 repeat
3 repeat
4 draw 𝐵← O, 𝐺 ← Geo

(
𝐶−1
𝐶

)
;

// 𝐺 is drawn according to geometric distribution with parameter 𝐶−1
𝐶

5 𝑖 ← 𝑖 − 1 + (1 − 𝐵)𝐺;

6 until 𝑖 = 0 or 𝑖 ≥ 𝑘 ;

7 if 𝑖 ≥ 𝑘 then
8 draw 𝑅 ← Bernoulli

(
(1 + 𝜁/2)−𝑖

)
;

9 𝐶 ← 𝐶 (1 + 𝜁/2), 𝜁 ← 𝜁/2, 𝑘 ← 2𝑘 ;

10 until 𝑖 = 0 or 𝑅 = 0;

11 return 1 [𝑖 = 0];

Proposition A.1 ([Hub16, Theorem 1]). Given access to a coin O𝜉 , given as input 𝐶 > 1 and 𝜁 > 0, with
promise that 𝐶𝜉 ≤ 1 − 𝜁 , LinearBF(O, 𝐶, 𝜁) terminates with probability 1 and returns a draw of O𝐶𝜉 .
Moreover, the expected number of calls to O𝜉 is at most 9.5𝐶𝜁−1.

Building upon the linear Bernoulli factory, a subtraction Bernoulli factory SubtractBF(O𝜉1 ,O𝜉2 , 𝜁)
was proposed in [NP05]. It transforms two coins O𝜉1 and O𝜉2—under the promise that 𝜉1 − 𝜉2 ≥ 𝜁 >
0—into a new coin O𝜉1−𝜉2 .

We implement this procedure using the linear Bernoulli factory defined above:

• SubtractBF
(
O𝜉1 ,O𝜉2 , 𝜁

)
= 1 − LinearBF

(
O(1−𝜉1+𝜉2)/2, 2, 𝜁

)
,

where the coin O(1−𝜉1+𝜉2)/2 is realized using O1/2, O𝜉1 , and O𝜉2 as follows: if O1/2 = 1, return

1 − O𝜉1 ; otherwise, return O𝜉2 .

The correctness and efficiency of this procedure is guaranteed as follows.

Corollary A.2 (c.f. [NP05, Proposition 14, (iv)]). Given access to two coins O𝜉1 and O𝜉2 , and given as
input 𝜁 > 0, with promise that 𝜉1 − 𝜉2 ≥ 𝜁 , SubtractBF

(
O𝜉1 ,O𝜉2 , 𝜁

)
terminates with probability 1 and

returns a draw of O𝜉1−𝜉2 . Moreover, the expected number of call to O𝜉 and O𝜉2 is at most 9.5𝜁−1 each.

Now we can formally give the construction of the Bernoulli factory for division in [Mor21],

BernoulliDivision(O𝜉 , 𝑝, 𝜁), which transforms a coin O𝜉 with the promise that 𝜉 − 𝑝 ≥ 𝜁 into a

new coin O𝑝/𝜁 . The construction is given as follows [Mor21, Algorithm 9].

Repeat the following until a value is returned:

• If a draw 𝐼 from O1/2 is 1: return 1 with probability 𝑝.

• Otherwise, return 0 if a draw from O𝜉−𝑝 returns 1,

27

where O𝜉−𝑝 is implemented using SubtractBF
(
O𝜉 ,O𝑝, 𝜁

)
.

The correctness and efficiency of this procedure is guaranteed as follows, which directly proves

Lemma 5.4.

Corollary A.3 (c.f. [Mor21, Proposition 2.24]). Given access to a coin O𝜉 , and given as input 0 ≤ 𝑝 ≤
1, 𝜁 > 0, with promise that 𝜉 − 𝑝 ≥ 𝜁 , BernoulliDivision

(
O𝜉 , 𝑝, 𝜁

)
terminates with probability 1 and

returns a draw of O𝑝/𝜉 . Moreover, the expected number of calls to O𝜉 is at most 9.5𝜉−1𝜁−1.

28

	1. Introduction
	1.1. Local sampling and local uniformity
	1.2. Our results
	1.3. Technique overview
	1.4. Related topics
	1.5. Organization

	2. Preliminaries
	2.1. Markov chain basics
	2.2. Systematic scan Glauber dynamics

	3. Coupling towards the past without marginal lower bounds
	3.1. Marginal sampling oracles
	3.2. Simulating stationary Markov chains using backward deduction
	3.3. Conditional correctness of the local sampler

	4. Application: a local sampler for spin systems with soft constraints
	5. Extension: a local sampler for q-colorings
	5.1. The local sampler
	5.2. Correctness of the local sampler
	5.3. Efficiency of the local sampler

	6. Conclusions and Open Problems
	Acknowledgement
	References
	Appendix A. Bernoulli factory method for simulating probability

