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Randomness In approximate counting

Estimating the volume of a convex body (with membership queries):
* No efficient deterministic polynomial-time algorithms exist! [Elekes '86, Barany, Furedi "87]

o Efficient randomised algorithms do exist (Markov chain Monte Carlo)! [Dyer, Frieze, Kannan "91]
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(Randomized) Counting to Sampling Reduction [Jerrum, Vahant, Varizani 86|
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‘ Estimating partition function of ferromagnetic Ising models: [Jerrum, Sinclair’ 93]

Estimating permanent of non-negative matrices: [Jerrum, Sinclair, Vigoda’04]

Estimating number of bases 1in matroids: [ Anari, Liu, Oveis Gharan, Vinzant”19], [Cryan, Guo, Mousa’21]

' Estimating partition functions of spin systems up to critical thresholds: | Anari, Liu, Oveis Gharan’20], [Chen, |
\ Liu, Vigoda’20, 21], [Chen, Feng,Y1in, Zhang'21,22], [Anari, Jain, Koehler, Pham, Vuong’22], [Chen, Eldan’22]/



Deterministic counting

Some approaches for efficient deterministic approximate counting:
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decay of correlation zero-freeness linear programming cluster-expansion
[Weitz ’06] [Barvinok ’16] for CSPs [Helmuth, Perkins, Regts "20]
[Bayati, Gamarnik, et.al. ’07] [Patel, Regts *17] [Moitra *19] [Jenssen, Keevash, Perkins "20]
[Gamarnik, Katz '07] [Guo, Liao, Lu, Zhang ’20]
[Jain, Pham, Vuong '21]
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Markov chain Monte Carlo

(Single-Site) Glauber dynamics
1. Start from any feasible configuration o € €2 Desired stationary distribution:
2. Fort=0,1...,T— 1, update the configuration as follows: u . [Q]V — | =

(1) Choose some v € V uniformly at random

2) Let X € [g]" be constructed as that X(u) =X,_{(u) forallu # v, and X,(v)

IS drawn independently according to the marginal distribution //tff—l(v\{"}).



Markov chain Monte Carlo

(Single-Site) Glauber dynamics

1. Start from any feasible configuration ¢ € €2 |
Occupied

2. Fort=0,1...,T — 1, update the configuration as follows:

(1) Choose some v € V uniformly at random Unoccupied

(2) Draw a uniform random real r, € [0, 1]

a. If there exists any occupied neighbour of v: update v as unoccupied

1

b. Otherwise, update v as unoccupied if 7, < " /1; occupied otherwise. S
_|_

Hardcore model

Input: a graph G = (V, E), a fugacity parameter 4 > 0

Q = independent sets I of G; forany ¢ € I, w(c) = A

w(o)

>, w(X)

XeQ

Goal: sample from pu( - ), where pu(o) =




Markov chain Monte Carlo

Systematic Scan Glauber dynamics

1. Start from any feasible configuration o € €2

) Occupied
2. Fort=0,l...,T— 1, update the configuration as follows:  Doeupie

(1) Choose v € V'in the order of v, V{, ..., V. _1, Vg, Vq> - - - Unoccupied

(2) Draw a uniform random real r, € [0,1]

V Vg o Vs
a. If there exists any occupied neighbour of v: update v as unoccupied
i .
b. Otherwise, update v as unoccupied if r, < | /1; occupied otherwise.
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Markov chain Monte Carlo

Systematic Scan Glauber dynamics

1. Start from any feasible configuration ¢ € €2 |
Occupied

2. Fort=0,1...,T — 1, update the configuration as follows:
(1) Choose v € V'in the order of vy, v, ..., V,_1, Vg, V15 - -- Unoccupied

(2) Draw a uniform random real r, € [0,1]

V3 V4 B

a. If there exists any occupied neighbour of v: update v as unoccupied

1

b. Otherwise, update v as unoccupied if r, < ; occupied otherwise. -

1+ 4
convergesto u( - )as T — oo
when irreducible

Hardcore model
(¢) — sample with bias < ¢

Q = independent sets I of G; forany ¢ € I, w(o) = A Imix(1/4) = L(nlogn)
[Hayes, Sinclair’07]

run 1o 7«

Input: a graph G = (V, E), a fugacity parameter 4 > 0

w(o)

2, w(X)

XeQ

Goal: sample from pu( - ), where pu(o) =




A Marginal Sampler from MCMC

Systematic Scan Glauber dynamics

1. Start from any feasible configuration ¢ € €2

‘ Occupied
' Unoccupied

2. Fort=0,1...,T — 1, update the configuration as follows:

(1) Choose v € Vin the order of vy, v, ..., V,_1, Vg, Vi - - -

(2) Draw a uniform random real r, € [0,1]

V3 Vg » N
a. If there exists any occupied neighbour of v: update v as unoccupied ™ P P
|
b. Otherwise, update v as unoccupied if r, < " /1; occupied otherwise.
_|_
Monte Carlo step of MCMC does not require
fully simulating the Markov chains!
1
. 1, < L we know v must be updated to unoccupied;
_|_

* Otherwise, we need its neighbor’s state to determine



A Marginal Sampler from MCMC

Systematic Scan Glauber dynamics

1. Start from any feasible configuration ¢ € €2

2. Fort=—(T-1),...,

. Occupied
‘ Unoccupied

— 1,0, update the configuration as follows:

(1) Choose v € Vin the order of vy, v, ..., V,_1, Vg, Vi - - -

(2) Draw a uniform random real r, € [0,1]

a. If there exists any occupied neighbour of v: update v as unoccupied
b. Otherwise, update v as unoccupied if r, < " il; occupied otherwise.
t |-17|-16 |—-15 | -14|-13 |-12 | -11|-10|-9 |-8 |-7 |-6 |-5 |—4 | -3 |-2 | -1 0
V Vol V1 | M V3 | Wy Vs | Vo | V1 | Vo V3 [ Vg | V5 | Vo | Vq Vy V3 | V4 | Vj5
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result| | Y 7R




A Marginal Sampler from MCMC

Systematic Scan Glauber dynamics

1. Start from any feasible configuration ¢ € €2
2. Fort=—-(T-1),...,

(1) Choose v € Vin the order of vy, v, ..., V,_1, Vg, Vi - - -

‘ Occupied
‘ Unoccupied

— 1,0, update the configuration as follows:

(2) Draw a uniform random real r, € [0,1]

a. If there exists any occupied neighbour of v: update v as unoccupied 4 ‘-
b. Otherwise, update v as unoccupied if r, < " il; occupied otherwise.
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A Marginal Sampler from MCMC

Systematic Scan Glauber dynamics

1. Start from any feasible configuration ¢ € €2
2. Fort=—-(T-1),...,

(1) Choose v € Vin the order of vy, v, ..., V,_1, Vg, Vi - - -

. Occupied
‘ Unoccupied

— 1,0, update the configuration as follows: Vi . V

(2) Draw a uniform random real r, € [0,1]

v/ v
a. If there exists any occupied neighbour of v: update v as unoccupied ' 4
1 Y
b. Otherwise, update v as unoccupied if r, < - /1; occupied otherwise.
t |-17 |-16 |-15|-14|-13 |-12|-11|-10|-9 |-8 |-7 |—-6 |-5 |—4 |-3 |=-2 |—-1 | O
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A Marginal Sampler from MCMC

Systematic Scan Glauber dynamics

1. Start from any feasible configuration ¢ € €2
2. Fort=—-(T-1),...,

(1) Choose v € Vin the order of vy, v, ..., V,_1, Vg, Vi - - -

. Occupied
‘ Unoccupied

— 1,0, update the configuration as follows:

(2) Draw a uniform random real r, € [0,1]

a. If there exists any occupied neighbour of v: update v as unoccupied

b. Otherwise, update v as unoccupied if r, < | il; occupied otherwise. N
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Systematic Scan Glauber dynamics
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Systematic Scan Glauber dynamics

1. Start from any feasible configuration ¢ € €2
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oupling fowards I'he Past

(outcome of v = v, 4. at time 1) ResolveT(t)

(Stored in a map, drawn

t<-T b

uniformly from [0,1] at first visit)

return according to | \ Visit 1, J

Initial state

1
N, 1 2
N, 1 + j, pred, (7): last visit time

of u before time ¢

recursively call Resolve(pred, (7))
for each neighbour u of v; J

{ return unoccupied |

An approximate marginal sampler! any return occupied "\,

none return occupied
Beyond hardcore model: marginal lower bounds

Hidden grand coupling: N |
return unoccupied j | returnoccupied |

the same set of {r,} is used.



oupling fowards I'he Past

(outcome of v = v, 4, at time 7) § Resolve (1) 3 terminates if 4 <

1
A—1

rt S 1 + /1 g

pred, (7): last visit time
~ of u before time ¢

recursively call Resolve _(pred (7))
for each neighbour u of v; ,

| return unoccupied |

any return occupied N, hone return occupied

‘ " return («Q@Upled

N

When Pr[t, = T& W%A(T))’

truncagq @QX?}\ O\ <log . ) bits gives up to ° bias.

[ return occupied |

A perfect marginal sampler!

v R SO - A
,

| - Simulating a Markov ¢ a‘e@ﬁfég n) random bits ,
: Slmulatlng e;tsgwwnargmal O(log n) random bits

S diEs Y el -y . . -



Related concepts

LLazy Depth-First Search Sampler

A for our work

Similarities:

* both give perfect marginal samplers with possibly logarithmic number of random bits

* both utilize the “marginal lower bounds” for early termination of the sampler

Distinctions:

* Our CTTP result comes from MCMC, while the AJ algorithm relies on spatial mixing properties.

+ AJ algorithm encounters some difficulty in matching the state-of-art bounds for some randomised algorithms.

-

(

Coupling From T'he Past

Similarities:
 both give perfect samplers from MCMC
* both run backwards in time and have underlying grand couplings

Distinction:
» CFTP needs to sequentially simulate the evolution of the whole state, which requires at least a linear number of
random bits, while CTTP only needs logarithmic number of random bits under suitable conditions.




Hypergraph indepnent sets

Let H = (V, &) be a k-uniform hypergraph with max. deg. A ' \
Aset S C VisindependentifSNe #eforalle € & PaE - '.

. . . Occupied

C ¢ 3
[Qiu, Wang, Zhang '22]: A < —Dk2 perfect sampler ~\ ‘ i
k , . o . . Unoccupied

He, W., Yin '23]: A < 2X° FPTAS
[Bezakova Galanls Goldberg, Guo Stefankovié ’23] A > 5 2k/2 NP hard

[Hermon, Sly, Zhang ’19]: A < CZk/z, Glauber dynamics

Our result for HIS

1
Let k> 2 and A > 2 be two integers such that A < L QK2
\/ 8ek?

There is an FPTAS for the number of independent sets in k-uniform hypergraphs with maximum
degree A.




CTTP for HIS

We apply CTTP on the systematic scan GD for HIS.
1

Each vertex has a — lower bound for “unoccupied”. . Y oA |



CTTP for

We apply CTTP on the systematic scan GD for HIS.
1

Each vertex has a B lower bound for “unoccupied”. *

Ve . . Occupied
N . . , s - \' . UnOCCUpied
When failing to determine using the lower bound, l . .
we need to resolve the states of its neighborhood. el B

Direct recursion: Need kA < 2 even for C1T'TP to terminate!

A more clever strategy: Recurse for a neighbouring hyperedge e € & only 1f

1
Fored (1) = 5 forallu € e



Let H = (V, &) be a k-uniform hypergraph with max. deg. A
A g-colouring ¢ C [q]v is proper if no hyperedge is monochromatic

[Jain, Pham, and Vuong ’21]: A < qk/3, compression+MCMC
[He, Sun, Wu ’22]: A < qk/3, perfect sampler

He, W., Yin '23]: A < g"°, FPTAS w ‘
(Galanis, Guo, Wang ’22]: A > 5 - g¥’?, even g, NP-hard

Our result for HC

(k—5)/3
Let k > 20 and A > 2 be two integers such that A < <i> ;

64

There is an FPTAS for the number of proper g-colourings in k-uniform hypergraphs with maximum
degree A.



Compression + MCMC for HC

The natural Glauber dynamics for HC is not irreducible.

We need the idea of compression + MCMC
[Feng, Guo, Yin, Zhang '21], [Feng, He, Yin '21]

Compression: Divide the g colors into buckets of sizes s.

The sampling algorithm
1. Decides the bucket of each vertex (using Glauber dynamics)
2. Decides the final color, conditioning on the bucketing

4HMufBﬁbkeﬁhg  i Glauber

: dynanﬁcs;\f




CTTP for HC

Local Uniformity | Erdos, Lovasz 75/, | Haeupler, Saha, Srinivasan 11|
If| g/s|* > 4egskA, then

1 1 marginal of any bucket ] ]
— (1 < under arbitrary pinning <—(14

s 4s (of buckets) S 4s

.

Complication for HC: no longer a Gibbs distribution after bucketing

When failing to determine using the lower bound,
we need to resolve the states of its connected component.

et TeMOVE Satisfied

e ~ep=t’ only look at its
-~ @R hyperedges ‘

{ connected component




Analysis of the truncation error

o V50~

‘ Occupied
‘ Unoccupied

Goal: Show Pr[tryn 2> T'] < exp(—O; ,A(T)) _
T Time-space (hyper)graph
[Hermon, Sly, Zhang’ 19]
[Jain, Pham, Vuong’ 21]
[He, Sun, Wu ’21]



Analysis of the truncation error

_ V() (VS . P

unrolling | =1 ¥ M (1. —3) @ ocouiea

. Unoccupied

i
> o Nk
ARV K / , o
t’ p
-
: (4
w .
P .o ’
pre- ”
x
— BE:. oW
o 44
, < EURERL 4
. i : _'-‘- (4
i 4
F /
d \ g
[ >
L 7

WAL E)

s =1y 0, =D

Goal: Show Pr[tryn 2> T'] < exp(—O; ,A(T)) _
T Time-space (hyper)graph
[Hermon, Sly, Zhang’ 19]
[Jain, Pham, Vuong’ 21}
'He, Sun, Wu ’21]

withess argument + union bound



Derandomising random scan

Random scan: each entry of the scan sequence is chosen for V u.a.r.

Enumerate all possible visited scan sequences within K = O(log n) random bits?

Construct witness tree
V5, Vs, V1, Vg, Vo, V35 V4, Vs Vs

Go backwards 1in time, each
time append to neighbour with
largest depth
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Derandomising random scan

Random scan: each entry of the scan sequence is chosen for V u.a.r.

Enumerate all possible visited scan sequences within K = O(log n) random bits?

Construct witness tree
V5, Vs, V1, Vg Vo, V35 Vs Vs Vs

Go backwards 1in time, each
time append to neighbour with
largest depth

Only poly(A*, g*) possible witness trees

2 Use dynamic programming to solve.
\_/ occurring prob. of each witness tree

Coincides with Moser-Tardos witness tree! v



Summary

We propose a new framework (CTTP) which gives light-weight samplers that can draw from
{ marginal distributions for derandomising MCMC algorithms.

j As concrete applications, we obtain efficient deterministic approximate counting algorithms for ',

| and , In regimes matching the state-of-
| the-art achleved by randomlsed Countlng/sampllng algorlthms

Thanks' Any questlons‘?

Future dlrectlons

- Beyond the marginal lower bound requirement/coupling technique?

- Beyond O(n log n) mixing time?

C
n
» Achieve truly polynomial ( f(k, A, g) (—) for some constant ¢) running time ?
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