
SODA 2023

Deterministic counting Lovász local lemma
beyond linear programming

Chunyang Wang
Nanjing University

Joint work with: Kun He (Chinese Academy of Science)
 Yitong Yin (Nanjing University)

Counting and Sampling

Counting problem:

 compute ∑
x∈Ω

w(x)

Sampling problem:
Sample x ∼

w(x)
∑

y∈Ω
w(y)

Given a weight function on state space ,w(⋅) Ω

Counting and Sampling

Counting problem:

 compute ∑
x∈Ω

w(x)

Sampling problem:
Sample x ∼

w(x)
∑

y∈Ω
w(y)

Given a weight function on state space ,w(⋅) Ω

typically exponentially

large (or infinite)

Counting and Sampling

Counting problem:

 compute ∑
x∈Ω

w(x)

Sampling problem:
Sample x ∼

w(x)
∑

y∈Ω
w(y)

Given a weight function on state space ,w(⋅) Ω

typically exponentially

large (or infinite)

typically #P-hard

to compute exactly

Counting and Sampling

(Almost) Uniform
Sampling

Randomized
Approximate Counting

self-reduction
[Jerrum, Valiant, Vazirani 1986]

adaptive simulated annealing
[Dyer, Frieze, Kannan 1991]

[Štefankovič, Vempala, Vigoda 2009]

Counting problem:

 compute ∑
x∈Ω

w(x)

Sampling problem:
Sample x ∼

w(x)
∑

y∈Ω
w(y)

Given a weight function on state space ,w(⋅) Ω

typically exponentially

large (or infinite)

typically #P-hard

to compute exactly

Deterministic Counting
Some approaches for deterministic counting:

• decay of correlation [Weitz ’06]

• zero-freeness [Barvinok ’16, Patel, Regts ’17]

• cluster-expansion [Helmuth, Perkins, Regts ’20, Jenssen, Keevash, Perkins ’20]

• linear programming for CSPs [Moitra ’19, Guo, Liao, Lu, Zhang ’20, Jain, Pham, Vuong ’21]

Deterministic Counting
Some approaches for deterministic counting:

• decay of correlation [Weitz ’06]

• zero-freeness [Barvinok ’16, Patel, Regts ’17]

• cluster-expansion [Helmuth, Perkins, Regts ’20, Jenssen, Keevash, Perkins ’20]

• linear programming for CSPs [Moitra ’19, Guo, Liao, Lu, Zhang ’20, Jain, Pham, Vuong ’21]

Developed independently
from sampling algorithms!

Deterministic Counting
Some approaches for deterministic counting:

• decay of correlation [Weitz ’06]

• zero-freeness [Barvinok ’16, Patel, Regts ’17]

• cluster-expansion [Helmuth, Perkins, Regts ’20, Jenssen, Keevash, Perkins ’20]

• linear programming for CSPs [Moitra ’19, Guo, Liao, Lu, Zhang ’20, Jain, Pham, Vuong ’21]

Developed independently
from sampling algorithms!

(Almost) Uniform
Sampling

Deterministic
Approximate Counting

Derandomization?

Variables: with finite domains for each

Constraints: with each defined on

satisfied, not satisfied }

CSP solution: assignment s.t. all constraints are satisfied

V = {v1, v2, …, vn} Qv v ∈ V

𝒞 = {c1, c2, …, cm} c ∈ 𝒞 𝗏𝖻𝗅(c) ⊆ V

c : ⨂
v∈𝗏𝖻𝗅(c)

Qv → {

X ∈ ⨂
v∈V

Qv

Constraint Satisfaction Problem
Φ = (V, Q, 𝒞)

Variables: with finite domains for each

Constraints: with each defined on

satisfied, not satisfied }

CSP solution: assignment s.t. all constraints are satisfied

V = {v1, v2, …, vn} Qv v ∈ V

𝒞 = {c1, c2, …, cm} c ∈ 𝒞 𝗏𝖻𝗅(c) ⊆ V

c : ⨂
v∈𝗏𝖻𝗅(c)

Qv → {

X ∈ ⨂
v∈V

Qv

Constraint Satisfaction Problem
Φ = (V, Q, 𝒞)

Decision: Can we efficiently decide if has a solution?

Search: Can we efficiently find a solution of ?

Counting/Sampling: Can we efficiently (approximately) count the number of
solutions/(almost) uniformly sample a solution of ?

Φ

Φ

Φ

Example: -CNF
, ,

 for each

Solution: an assignment such that each clause (constraint)
evaluates to

k
V = {x1, x2, …, xn} 𝒞 = (C1, C2, …, Cm) |Ci | = k
Qv ∈ {𝖳𝗋𝗎𝖾, 𝖥𝖺𝗅𝗌𝖾} v ∈ V

𝖳𝗋𝗎𝖾

x1

x2

x5

x4

x3

x6

𝖳𝗋𝗎𝖾

𝖥𝖺𝗅𝗌𝖾

Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x5 ∨ ¬x6) ∧ (x3 ∨ ¬x4 ∨ ¬x5)

Example: hypergraph -coloring
-uniform hypergraph

color set for each

Solution: an assignment such that no hyperedge
(constraint) is monochromatic

q
k H = (V, ℰ)

[q] v ∈ V

Variable framework
• each draws from uniformly and independently at random

• product distribution

Parameters
• violation probability

• constraint degree

v ∈ V Qv

𝒫

p = max
c∈𝒞

Pr
𝒫

[¬c]

Δ = max
c∈𝒞

|{c′ ∈ 𝒞 ∣ 𝗏𝖻𝗅(c) ∩ 𝗏𝖻𝗅(c′) ≠ Ø} |

Lovász Local Lemma
Φ = (V, Q, 𝒞)

Variable framework
• each draws from uniformly and independently at random

• product distribution

Parameters
• violation probability

• constraint degree

v ∈ V Qv

𝒫

p = max
c∈𝒞

Pr
𝒫

[¬c]

Δ = max
c∈𝒞

|{c′ ∈ 𝒞 ∣ 𝗏𝖻𝗅(c) ∩ 𝗏𝖻𝗅(c′) ≠ Ø} |

epΔ ≤ 1
Lovász Local Lemma

[Erdos, Lovász ’75]

A CSP solution exists
and can be efficiently found!Algorithmic Lovász Local Lemma

[Moser, Tardos ’10]

Lovász Local Lemma
Φ = (V, Q, 𝒞)

Counting/Sampling LLL
Input: a CSP formula under LLL-like conditions

Output: Counting LLL: the approximate number of solutions of

 Sampling LLL: an (almost) uniform satisfying solution of

Φ = (V, Q, 𝒞) pΔc ≲ 1
Φ

Φ

[BGGGS19,GGW22]:

NP-hard if !pΔ2 ≳ 1

Counting/Sampling LLL
Input: a CSP formula under LLL-like conditions

Output: Counting LLL: the approximate number of solutions of

 Sampling LLL: an (almost) uniform satisfying solution of

Φ = (V, Q, 𝒞) pΔc ≲ 1
Φ

Φ

[BGGGS19,GGW22]:

NP-hard if !pΔ2 ≳ 1

pΔ60 ≲ 1

pΔ16 ≲ 1

pΔ7 ≲ 1

 marginal approximator

by linear programmingGuo, Liu, Lu, Zhang ’19 hypergraph -coloringq

general CSP Jain, Pham, Vuong ’21b

-CNFkMoitra ’17

Work Instance Condition Technique

Deterministic counting LLL:
runs in timen𝗉𝗈𝗅𝗒(k,Δ,log q)

Counting/Sampling LLL
Input: a CSP formula under LLL-like conditions

Output: Counting LLL: the approximate number of solutions of

 Sampling LLL: an (almost) uniform satisfying solution of

Φ = (V, Q, 𝒞) pΔc ≲ 1
Φ

Φ

[BGGGS19,GGW22]:

NP-hard if !pΔ2 ≳ 1

pΔ60 ≲ 1

pΔ16 ≲ 1

pΔ7 ≲ 1

 marginal approximator

by linear programmingGuo, Liu, Lu, Zhang ’19 hypergraph -coloringq

general CSP Jain, Pham, Vuong ’21b

-CNFkMoitra ’17

Work Instance Condition Technique

Deterministic counting LLL:
runs in timen𝗉𝗈𝗅𝗒(k,Δ,log q)

Work Instance Condition Technique

Hermon, Sly, Zhang’16
Markov chain Monte Carlo

(MCMC)

or

projected MCMC

Feng, Guo, Yin, Zhang ’20

Feng, He, Yin,’21

He, W., Yin,’22

monotone -CNFk pΔ2 ≲ 1

pΔ20 ≲ 1

pΔ350 ≲ 1

pΔ7 ≲ 1

pΔ5.713 ≲ 1

-CNFk

atomic CSP

atomic CSP

general CSP recursive marginal sampler

(Randomized) sampling LLL:
runs in time𝗉𝗈𝗅𝗒(n, k, Δ, q)

Jain, Pham, Vuong ’21a

He, Sun, Wu ’21

Our results

A general CSP satisfying

q2 ⋅ k ⋅ p ⋅ Δ5 ≤
1

256e3

derandomized algorithm for counting LLL in an improved regime

 : domain size
 : constraint width
 : violation probability
 : constraint degree
 :

q
k
p
Δ
n |V |

• is a derandomization of the recent fast sampling algorithm in [He, W., Yin ’22]

• relies on a combinatorial marginal approximator, which is arguably simpler than

previous linear programming-based ones for counting LLL

a deterministic FPTAS

approximating # of satisfying

solutions in time npoly(k,Δ,log q)

general CSPs:

atomic CSPs (including -CNF):

pΔ7 ≲ 1 → pΔ5 ≲ 1
k

pΔ5.713 ≲ 1 → pΔ5 ≲ 1

Local Uniformity

[Haeupler, Saha, Srinivasan ’11]:

LLL condition

where

⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at

μ
μv v ∈ V

Local Uniformity

[Haeupler, Saha, Srinivasan ’11]:

LLL condition

where

⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at

μ
μv v ∈ V

Local Uniformity

[Haeupler, Saha, Srinivasan ’11]:

LLL condition

where

⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at

μ
μv v ∈ V

Local Uniformity

“zone of local uniformity”

“zone of indecision”
[Haeupler, Saha, Srinivasan ’11]:

LLL condition

where

⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at

μ
μv v ∈ V

μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟v

: uniform over 𝒰 [q]

𝒟v(x) =
μv(x) − θ
1 − qθ

“Overflow distribution”

Local Uniformity

“zone of local uniformity”

“zone of indecision”
[Haeupler, Saha, Srinivasan ’11]:

LLL condition

where

⟹ μv ≥ θ

θ = (1 − o(1))
1
q

: uniform distribution over solutions

: marginal distribution at

μ
μv v ∈ V

Factorization property
A key observation: assigning values to other variables may help factorize the formula!

Factorized!
remove satisfied

constraints
assigning values

to other variables

When the connected component containing is logarithmically small,

we can use exhaustive enumeration to calculate and

v
μσ

v 𝒟σ
v

partial assignment
σ

A recursive marginal approximator

To approximate :

approximate

μσ
v

𝒟σ
v

μσ
v = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟σ

v

𝒟σ
v = ∑

a∈[q]
(μσ

u(a) ⋅ 𝒟σu←a
v)

To approximate :

(1) If the formula is factorized with respect to ,

use exhaustive enumeration to calculate

(2) Otherwise, choose another variable and

recursively calculate and for

𝒟σ
v

v
𝒟σ

v
u

μσ
u 𝒟σu←a

v 𝒟σ
vchoose

wisely!

: uniform distribution over solutions

: marginal distribution at

conditioning on partial assignment

: The extended partial assignment

after assigning to

μ
μσ

v v ∈ V
σ

𝒟σ
v ≜

μσ
v − qθ

1 − qθ
σu←a

a u

A recursive marginal approximator

To approximate :

approximate

μσ
v

𝒟σ
v

μσ
v = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟σ

v

𝒟σ
v = ∑

a∈[q]
(μσ

u(a) ⋅ 𝒟σu←a
v)

To approximate :

(1) If the formula is factorized with respect to ,

use exhaustive enumeration to calculate

(2) Otherwise, choose another variable and

recursively calculate and for

𝒟σ
v

v
𝒟σ

v
u

μσ
u 𝒟σu←a

v 𝒟σ
vchoose

wisely!

: uniform distribution over solutions

: marginal distribution at

conditioning on partial assignment

: The extended partial assignment

after assigning to

μ
μσ

v v ∈ V
σ

𝒟σ
v ≜

μσ
v − qθ

1 − qθ
σu←a

a u

chain rule correctness!→

A recursive marginal approximator

Caveat:
“bad” assignments exist

To approximate :

approximate (a decay in error)

μσ
v

𝒟σ
v

μσ
v = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟σ

v

𝒟σ
v = ∑

a∈[q]
(μσ

u(a) ⋅ 𝒟σu←a
v)

To approximate :

(1) If the formula is factorized with respect to ,

use exhaustive enumeration to calculate

(2) Otherwise, choose another variable and

recursively calculate and for

𝒟σ
v

v
𝒟σ

v
u

μσ
u 𝒟σu←a

v 𝒟σ
v

: uniform distribution over solutions

: marginal distribution at

conditioning on partial assignment

: The extended partial assignment

after assigning to

μ
μσ

v v ∈ V
σ

𝒟σ
v ≜

μσ
v − qθ

1 − qθ
σu←a

a u

A recursive marginal approximator

Caveat:
“bad” assignments exist

To approximate :

approximate (a decay in error)

μσ
v

𝒟σ
v

μσ
v = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟σ

v

𝒟σ
v = ∑

a∈[q]
(μσ

u(a) ⋅ 𝒟σu←a
v)

To approximate :

(1) If the formula is factorized with respect to ,

use exhaustive enumeration to calculate

(2) Otherwise, choose another variable and

recursively calculate and for

𝒟σ
v

v
𝒟σ

v
u

μσ
u 𝒟σu←a

v 𝒟σ
v

: uniform distribution over solutions

: marginal distribution at

conditioning on partial assignment

: The extended partial assignment

after assigning to

μ
μσ

v v ∈ V
σ

𝒟σ
v ≜

μσ
v − qθ

1 − qθ
σu←a

a u

Solution:

 truncate properly so that

(1) exhaustive enumeration is efficient

(2) truncation error can be well-controlled

A recursive marginal approximator

Caveat:
LLL condition

not self-reducible!

To approximate :

approximate (a decay in error)

μσ
v

𝒟σ
v

μσ
v = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟σ

v

𝒟σ
v = ∑

a∈[q]
(μσ

u(a) ⋅ 𝒟σu←a
v)

To approximate :

(1) If the formula is factorized with respect to ,

use exhaustive enumeration to calculate

(2) Otherwise, choose another variable and

recursively calculate and for

𝒟σ
v

v
𝒟σ

v
u

μσ
u 𝒟σu←a

v 𝒟σ
v

: uniform distribution over solutions

: marginal distribution at

conditioning on partial assignment

: The extended partial assignment

after assigning to

μ
μσ

v v ∈ V
σ

𝒟σ
v ≜

μσ
v − qθ

1 − qθ
σu←a

a u

A recursive marginal approximator

Caveat:
LLL condition

not self-reducible!

To approximate :

approximate (a decay in error)

μσ
v

𝒟σ
v

μσ
v = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟σ

v

𝒟σ
v = ∑

a∈[q]
(μσ

u(a) ⋅ 𝒟σu←a
v)

To approximate :

(1) If the formula is factorized with respect to ,

use exhaustive enumeration to calculate

(2) Otherwise, choose another variable and

recursively calculate and for

𝒟σ
v

v
𝒟σ

v
u

μσ
u 𝒟σu←a

v 𝒟σ
v

: uniform distribution over solutions

: marginal distribution at

conditioning on partial assignment

: The extended partial assignment

after assigning to

μ
μσ

v v ∈ V
σ

𝒟σ
v ≜

μσ
v − qθ

1 − qθ
σu←a

a u

Solution:

freezing[Beck’ 91][JPV’ 21b]

“freeze” ！Pr
𝒫

[¬c ∣ X] > α ⟹ c

Marginal Approximator
MarginalApproximator : approximates

RecursiveApproximator ;

return

(σ, v) μσ
v

�̂�σ
v ← (σ, v)

qθ ⋅ 𝒰 + (1 − qθ) ⋅ �̂�σ
v

RecursiveApproximator : approximates

If some truncation condition is reached

return an arbitrary distribution on ;

If

MarginalApproximator , RecursiveApproximator for each ;

return

Compute and return using exhaustive enumeration

(σ, v) (μσ
v − θ)/(1 − qθ)

[q]

u = NextVar(σ, v) ≠ ⊥
̂μσ
u ← (σ, v) �̂�σu←a

v ← (σ, v) a ∈ [q]

∑
a∈[q]

(̂μσ
u(a) ⋅ �̂�σu←a

v)
𝒟σ

v

local uniformity
[Haeupler, Saha, Srinivasan ’11]:
worst-case LLL cond.

where
⟹ μσ

v ≥ θ
θ = (1 − o(1))1/q

: subroutine for choosing the next variable to assign
NextVar
(informal) boundary variable over connected component of frozen constraints containing v

No linear program involved!

The main algorithm
 Main Algorithm (sketch):

Find a “good” sequence of partial assignments s.t. is
empty and extends on some unassigned variable, deterministically;

Approximate as a telescopic product of marginal distributions;

Calculate using exhaustive enumeration, yielding .

P0, P1, …, Ps P0
Pi Pi−1

|𝒮Ps
|

|𝒮P0
|

|𝒮Ps
| |𝒮P0

|

1. can be well-approximated

2. can be efficiently enumerated

|𝒮Pi
|

|𝒮Pi−1
|

|𝒮Ps
|

remove satisfied

constraints

Decomposed!

“guiding assignment” in [JPV’ 21b]

Method of conditional expectation : set of satisfying solutions extending 𝒮σ σ

The freezing threshold α

small α
good guarantees of

worst-case local uniformity
(large)qθ

large decay of error for one
step of MarginalApproximator

small p/α constraints are easy to
satisfy before frozen

large fraction of distribution
not truncated

small enough p MarginalApproximator well approximates
the marginal distribution (informal)

and how it relates to approximation error of MarginalApproximator

Truncated up to certain condition

Tree recursion of approximation error
(σ, v)

(τ0, u) (τ1, v) (τq, v)⋯

𝒯τ0,u 𝒯τ1,v 𝒯τq,v

𝒯σ,v

λσ
v =

0 NextVar(σ, v) = ⊥
1 (σ, v) is truncated

(1 − qθ)λτ0u + ∑
a∈[q]

(μσ
u(a) ⋅ λτav) otherwise

"cost function” :λσ
v

⋯

dTV(𝒟σ
v, �̂�σ

v) ≤ λσ
v

: distribution of RecursiveApproximator �̂�σ
v (σ, v)

Decay of approximation error

Truncated up to certain condition

(σ, v)

(τ0, u) (τ1, v) (τq, v)⋯

𝒯τ0,u 𝒯τ1,v 𝒯τq,v

𝒯σ,v

⋯

λσ
v =

0 NextVar(σ, v) = ⊥
1 (σ, v) is truncated

(1 − qθ)λτ0u + ∑
a∈[q]

(μσ
u(a) ⋅ λτav) otherwise

Witness argument (bound)pΔ7 ≲ 1

A truncated path a large -tree [Alon’ 91]
with ind. bad events

{2,3}

Bad events
Type 1: (fraction)(σ, v) → (τ0, u) qθ = O(Δ−3)
Type 2: is frozen (fraction roughly)c ∈ 𝒞 α/p = O(Δ−3)

Percolation-style analysis

Analyze truncated root-to-leaf paths

Decay of approximation error

Truncated up to certain condition

(σ, v)

(τ0, u) (τ1, v) (τq, v)⋯

𝒯τ0,u 𝒯τ1,v 𝒯τq,v

𝒯σ,v

⋯

λσ
v =

0 NextVar(σ, v) = ⊥
1 (σ, v) is truncated

(1 − qθ)λτ0u + ∑
a∈[q]

(μσ
u(a) ⋅ λτav) otherwise

Witness argument (bound)pΔ7 ≲ 1

A truncated path a large -tree [Alon’ 91]
with ind. bad events

{2,3}

Bad events
Type 1: (fraction)(σ, v) → (τ0, u) qθ = O(Δ−3)
Type 2: is frozen (fraction roughly)c ∈ 𝒞 α/p = O(Δ−3)

Different
densities!

(variable)
(constraint)

Percolation-style analysis

Analyze truncated root-to-leaf paths

Truncated up to certain condition

(σ, v)

(τ0, u) (τ1, v) (τq, v)⋯

𝒯τ0,u 𝒯τ1,v 𝒯τq,v

𝒯σ,v

⋯

Decay of approximation error

λσ
v =

0 NextVar(σ, v) = ⊥
1 (σ, v) is truncated

(1 − qθ)λτ0u + ∑
a∈[q]

(μσ
u(a) ⋅ λτav) otherwise

Witness argument (bound)pΔ5 ≲ 1

A truncated path a large generalized -tree
with ind. bad events

{2,3}

Bad events
Type 1: (fraction)(σ, v) → (τ0, u) qθ = O(Δ−1)
Type 2: is frozen (fraction roughly)c ∈ 𝒞 α/p = O(Δ−3)

(variable)
(constraint)

Different
densities!

Percolation-style analysis

Analyze truncated root-to-leaf paths

Generalized -tree{2,3}

 is a -tree of if:

• for any distinct , ;

• is connected if an edge is added between every such that .

T ⊆ ℰ {2,3} 𝖫𝗂𝗇(H)
u, v ∈ T 𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H)(u, v) ≥ 2

T u, v ∈ T 𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H)(u, v) ∈ {2,3}

: a hypergraph : the line graph of

:shortest path distance in

H = (V, ℰ) 𝖫𝗂𝗇(H) H
𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H) 𝖫𝗂𝗇(H)

, where , is a generalized -tree of if:

• for any distinct , ;

• It holds for the directed graph that there is a vertex (called a root) which can reach

all other vertices through directed paths, where the is constructed on the vertex set as that,

for any there is an arc if and only if at least one of the following conditions is satisfied:

- and ;

- and there exists such that ;

- and there exists such that ;

- and there exists such that .

T = U ∪ E U ⊆ V, E ⊆ ℰ {2,3} H
u, v ∈ E 𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H)(u, v) ≥ 2

G(T, 𝒜) r ∈ T
G(T, 𝒜) T

u, v ∈ T u, v ∈ 𝒜
u, v ∈ E 𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H)(u, v) ∈ {2,3}
u ∈ U, v ∈ E e ∈ ℰ u ∈ e ∧ 𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H)(v, e) = 1
u ∈ E, v ∈ U e ∈ ℰ u ∈ v ∧ 𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H)(u, e) ∈ {1,2}
u, v ∈ U e ∈ ℰ u, v ∈ e

Summary
We develop a new approach for deterministic approximate counting general CSP solutions in
the LLL regime by derandomizing the recursive sampler in [He, W., Yin ’22].

We invent a refined combinatorial structure of generalized -tree, leading to a

state-of-the-art regime for counting/sampling general CSP solutions.

{2,3}
pΔ5 ≲ 1

Summary
We develop a new approach for deterministic approximate counting general CSP solutions in
the LLL regime by derandomizing the recursive sampler in [He, W., Yin ’22].

We invent a refined combinatorial structure of generalized -tree, leading to a

state-of-the-art regime for counting/sampling general CSP solutions.

{2,3}
pΔ5 ≲ 1

Future work
• A better LLL condition? (Current versus lower bound)

• Derandomizing more general methods for sampling LLL, such as MCMC?

(Resolved by [Feng, Guo, W., Wang, Yin ’22])

pΔ5 ≲ 1 pΔ2 ≳ 1

Summary
We develop a new approach for deterministic approximate counting general CSP solutions in
the LLL regime by derandomizing the recursive sampler in [He, W., Yin ’22].

We invent a refined combinatorial structure of generalized -tree, leading to a

state-of-the-art regime for counting/sampling general CSP solutions.

{2,3}
pΔ5 ≲ 1

Future work
• A better LLL condition? (Current versus lower bound)

• Derandomizing more general methods for sampling LLL, such as MCMC?

(Resolved by [Feng, Guo, W., Wang, Yin ’22])

pΔ5 ≲ 1 pΔ2 ≳ 1

Thanks! Any questions?

