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self-reduction
[Jerrum, Valiant, Vazirani 1986]

(Almost) Uniform Randomized

Sampling adaptive simulated annealing Approximate Counting

) [Dyer, Frieze, Kannan 1991]
[Stefankovi¢, Vempala, Vigoda 2009]



Deterministic Counting

~

Some approaches for deterministic counting:
» decay of correlation [VWeitz '06]

» zero-freeness [Barvinok 16, Patel, Regts ’17]
» cluster-expansion [Helmuth, Perkins, Regts 20, Jenssen, Keevash, Perkins '20]
* |[inear programming for CSPs [Moitra ’19, Guo, Liao, Lu, Zhang ’20, Jain, Pham, Vuong '21]
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Derandomization?
(Almost) Uniform

Sampling

Deterministic
Approximate Counting



Constraint Satisfaction Problem
@ — (V9 Q’ %)
Variables: V = {v,, v,, ..., v } with finite domains Q, foreachv € V

Constraints: 6 = {c¢,¢,, ..., C,,} with each ¢ € € defined on vbl(c) C V

C . ® (), — {satisfied, not satisfied }

vevbl(c)

CSP solution: assignment X & ® 0, s.t. all constraints are satisfied

vevV



Constraint Satisfaction Problem
@ — (V9 Q’ %)
Variables: V = {v,, v,, ..., v } with finite domains Q, foreachv € V

Constraints: 6 = {c¢,¢,, ..., C,,} with each ¢ € € defined on vbl(c) C V

C . ® (), — {satisfied, not satisfied }

vevbl(c)

CSP solution: assignment X & ® 0, s.t. all constraints are satisfied

vevV

- Can we efficiently decide if @ has a solution?

Search: Can we efficiently find a solution of ®?

Counting/Sampling: Can we efficiently (approximately) count the number of
solutions/(almost) uniformly sample a solution of ®?



Example: k-CNF
V= {xl,X2, ...,xn}, % — (Cl’ C2, 50 0 Cm), |Cl| — k

Q, € {True,False} foreachv € V
Solution: an assignment such that each clause (constraint)

evaluates to True

Example: hypergraph g-coloring
k-uniform hypergraph H = (V, &)

color set [g]| foreachv € V

Solution: an assignment such that no hyperedge
(constraint) is monochromatic




Lovasz Local Lemma
® = (V,0,%)

Variable framework
« each v € Vdraws from Q, uniformly and independently at random

 product distribution &

Parameters
. violation probability p = max Pr| —¢]
CEC P

. constraint degree A = max | {c¢’' € € | vbl(c) N vbl(c") = D} |
CEEG
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Variable framework
« each v € Vdraws from Q, uniformly and independently at random

 product distribution &

Parameters

. violation probability p = max Pr| —¢]
CEEC P

. constraint degree A = max | {c¢’' € € | vbl(c) N vbl(c") = D} |
CEEG

j.' [Erdos, Lovasz '75] | |
| ep A < 1 | ﬁ ' ACSP solution exists |
—_ :{ u . ! ‘
ﬂ j Algorithmic Lovasz Local Lemma | and can be eff|C|entIy found |
‘ [Moser, Tardos ’10] "» j,



Counting/Sampling LLL

R e e ————————— e e e

Input: a CSP formula @ = (V, O, &) under LLL-like conditions pA° < 1

Output: Counting LLL: the approximate number of solutions of ®

[BGGGS19,GGW22]:
NP-hard if pA% > 1!

Sampling LLL: an (almost) uniform satisfying solution of ®
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Input: a CSP formula @ = (V, O, &) under LLL-like conditions pA° < 1
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Work Instance Condition Technique

Moitra *17 k-CNF pA® <1

marginal approximator | Deterministic counting LLL:

Guo, Liu, Lu, Zhang ’19 hypergraph g-coloring pA'® <1 by linear programming runs in nPoY&Al0g9) oo

Jain, Pham, Vuong ’21b general CSP pA’ < 1




Counting/Sampling LLL
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Input: a CSP formula @ = (V, O, &) under LLL-like conditions pA° < 1

Output: Counting LLL: the approximate number of solutions of ®

e e

Sampling LLL: an (almost) uniform satisfying solution of ®

S e e R R A R R R R —

Work Instance Condition Technique
Moitra *17 k-CNF pA® <1
| | | i marginal approximator
Guo, Liu, Lu, Zhang '19 hypergraph g-coloring pA©® <1 by linear programming
Jain, Pham, Vuong ’21b general CSP pA’ < 1
Work Instance Condition Technique
Hermon, Sly, Zhang’16 monotone k-CNF pA? < 1
Markov chain Monte Carlo
Feng, Guo, Yin, Zhang ’20 k-CNF pA? < 1 (MCMC)
Feng, He, Yin,’21 atomic CSP pAP <1 of
, : rojected MCMC
Jain, Pham, Vuong ’21a atomic CSP AST13 < 1 bro)
He, Sun, Wu 21 P ~
He, W., Yin,’22 general CSP pA’ <1 recursive marginal sampler

[BGGGS19,GGW22]:
NP-hard if pA% > 1!

Deterministic counting LLL:
runs in nPOY*A1024) time

(Randomized) sampling LLL:
runs in poly(#n, k, A, g) time



Our results

derandomized algorithm for counting LLL in an improved regime

A general CSP satisfying

g*-k-p-A°

<

g: domain size
k: constraint width
p: violation probability

a deterministic FPTAS
approximating # of satisfying

1

e

general CSPs:
pAT<1 -5 pA°> <1

— 2563

atomic CSPs (including k-CNF):]
pA5'713 S 1 —>pA5 5 1

| A: constraint degree
n: | V|

solutions in time nPoY(k.A.logq)

—

e

.

* |s a derandomization of the recent fast sampling algorithm in [He, W., Yin '22]

| relies on a combinatorial marginal approximator, which is arguably simpler than
_J previous linear programming-based ones for counting LLL

e .
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Local Uniformity

u: uniform distribution over solutions
u,: marginal distributionatv € V

[Haeupler, Saha, Srinivasan '11]:

LLL condition = u, > €

where 8 = (1 — 0(1))l
q
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Local Uniformity

D2
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u,: marginal distribution at v € V
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where 0 = (1 — 0(1))l
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| “zone of indecision” |-
“zone of local uniformity”

P2
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Local Uniformity

P2

u: uniform distribution over solutions

p3
| “zone of indecision” L u,: marginal distributionatv € V

1 [Haeupler, Saha, Srinivasan "11]:

LLL condition = u, > €

l | i i | i - { - i 0
“zone of local uniformity” where 6 = (1 — 0(1));

7/ uniform over [g]

X

l /’tv=q9°%+(1_q9)'9v

“Overflow distribution”

\ 0 () = P00 =0




Factorization property

A key observation: assigning values to other variables may help factorize the formula!

\d  assigning values §

-. | d remove satisfied |
4 toothervariables § ‘

constraints

When the connected component containing v is logarithmically small,
we can use exhaustive enumeration to calculate y) and &9




choose\

wisely!

A recurswe marglnal approximator

u: uniform distribution over solutions

u® =q0- %+ - gb) - D° [T .rrlmarglnal distribution .at vevV
' conditioning on partlal assignment o
- ?;;11.171 o | g & Hy, — qo
pproximate - I — g0
approximate 93 0,. .: The extended partial assignment

after assigning a to u

e e - e S

Z (a)- D u<—a)

a€lq]

S — I e e e R—

To approximate &7:

(1) If the formula is factorized with respect to v,
use exhaustive enumeration to calculate 2¢ |

(2) Otherwise, choose|another variable u and 3

recursively calculate u” and &) for 9 )




choose\

wisely!

A recurswe marglnal approximator

u: uniform distribution over solutions

4o = g0 U+(1 — qb) - D° ; p.: marginal distributionatv € V
| conditioning on partial assignment o

——— f 4 = g
: O. ~ gy° ATV
To approximate p,;: YT g0
approximate 93 0,. .: The extended partial assignment
after assigning a to u
Z (a)- D u<—a) |
ac|q] | (‘ Y

To approximate &7:

e

(1) If the formula is factorized with respect to v,
use exhaustive enumeration to calculate 2¢ |

(2) Otherwise, choose|another variable u and 3

recursively calculate u and 2 for D?

Lc:haln rule—correctness!

e e e e e J




A recurswe marglnal approximator

u: uniform distribution over solutions

4o = g0 U+(1 = qb) - D° p.: marginal distributionatv € V
| conditioning on partlal assignment o
- ;‘1 ‘j‘.JTl o. | DI £ itk
O approximate U, . 1 — g6

approximate @g (a decay IN error) o, .. The extended partial assignment

u
after assigning a to u

e e . e S

Z (a) - D LH)

a€lq]
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To approximate &7:

Caveat:
“bad” assignments exist

(1) If the formula is factorized with respect to v,
use exhaustive enumeration to calculate ¢ |

(2) Otherwise, choose another variable u and |
recursively calculate u” and &) for 9 )



A recurswe marglnal approximator

u: uniform distribution over solutions

4o = g0 U+(1 = qb) - D° p.: marginal distributionatv € V
| conditioning on partlal assignment o
- ;‘1 ‘j‘.JTl o. | DI £ itk
O approximate U, . 1 — g6

approximate @g (a decay IN error) o, .. The extended partial assignment

u
after assigning a to u

e e - e S

Z %(aq) - D H) ) ) C_aveat: |
aclq] bad” assignments exist
"To anbroximate G0 Solution:

To approximate &7:

. . . | truncate properly so that
(1) If the formula is factorized with respect to v, (1) exhaustive enumeration is efficient

use exhaustive enumeration to calculate &7 ) truncation error can be well-controlled
(2) Otherwise, choose another variable u and |
| o Oy O ]



A recurswe marglnal approximator

u: uniform distribution over solutions

u® =q0- U+ — qo) - P° p.: marginal distributionatv € V
| conditioning on partlal assignment o
T Toaproximate 17 ‘ o 2 =18
pproximate (., - 1 — g0
approximate @g (a decay IN error) o, .. The extended partial assignment

after assigning a to u
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A recurswe marglnal approximator

u: uniform distribution over solutions

u® =q0- U+ — qo) - P° p.: marginal distributionatv € V
| conditioning on partlal assignment o
o approimate 17 ‘ o o 11—
pproximate y.: 1 — g0
approximate S’Zﬁ (a decay In error) o, . .: The extended partial assignment

after assigning a to u

e e —— e S

Z °(a) - D LH) Caveafc:_
aglq] LLL condition

B P T | nhot self-reducible!
To approximate &7: |

Solution:
freezing|Beck’ 91[[JPV’ 21D]

| | | Pr[—c | X] > a = “freeze” ¢!
(2) Otherwise, choose another variable u and | P

(1) If the formula is factorized with respect to v,
use exhaustive enumeration to calculate ¢ |



Marginal Approximator

local uniformity

MarginalApproximator(c, v): approximates y° Haeupler, Saha, Stinivasan "11]:

@;’ < RecursiveApproximator(o, v); worst-case LLL cond. = u’ > 0
return g0 - % + (1 — q0) - D° where 6 = (1 —o(1))1/q

RecursiveApproximator(c, v): approximates (u’ — 0)/(1 — g0)

If some truncation condition is reached

return an arbitrary distribution on [¢]; No linear program involved!

If u = NextVar(o,v) # L
(1% « MarginalApproximator(c, v), S?Zf“*“ < RecursiveApproximator(o, v) for each a € [g];

return Z </22(a) : @3“““)

a€lq]
Compute and return &7 using exhaustive enumeration

NextVar: subroutine for choosing the next variable to assign

(informal) boundary variable over connected component of frozen constraints containing v




The main algorithm

Main Algorithm (sketch):

(- Sy | | Finda “good” sequence of partial assignments Py, Py, ..., P s.t. Pyis
1. S i ‘ can be well-approximated h empty and P, extends P;_; on some unassigned variable, deterministically;
P;_ &
u P,
12. | & P, \ can be efficiently enumerate:dj Approximate < as a telescopic product of marginal distributions;
- Py

Calculate |S'p | using exhaustive enumeration, yielding [ S'p |-

*“guiding assignment” in [JPV" 21D] | ey _ |
Method of conditional expectation S . set of satisfying solutions extending o

Ole o[C0 00}

remove satisfied

constraints
>




The freezing threshold «

and how it relates to approximation error of MarginalApproximator

good guarantees of
» worst-case local uniformity

(large g0)

large decay of error for one

small step of MarginalApproximator

large fraction of distribution

small p/a » constraints are easy to ‘
F satisfy before frozen | |

not truncated

MarginalApproximator well approximates f

small enough p the marginal distribution (informal)



Tree recursion of approximation error

v

oV 7 TN
N
NS S "cost function” A.:
| ‘ 0 NextVar(o,v) = L
' (g, 1) ’ (71, V) ‘ oo o (7, V) A 20 = 1 (o, V) is truncated
N’ | ’ N (1 —gDA2+ Y (ul(a)-Al) otherwise
a<lq]

A (D0, D%) < AC

éZﬁ - distribution of RecursiveApproximator(c, v)

1 Truncated up to certain condition |



Decay of approximation error

e e A A

E_ (6. V) Percolation-style analysis

Analyze truncated root-to-leaf paths

e R R e e e R

o0 0 T ,v) (—_—_—__—__——_——_—_—_——
\ Withess argument (pA7 < ] bound)

: : a large {2,3 }-tree ,
with ind. bad events :

A truncated path

|

|

R
|~
F

|

e e e A e e _j

Bad events H

(e e S ——— — Type 1: (6,v) — (1, u) (fraction g8 = O(A™)) |
' Truncated up to certain condition | ‘ Type 2: ¢ € B is frozen (fraction roughly a/p = O(A™2)) |

— e e e e e v_‘_‘;J

— e e e e R e e

0 NextVar(o,v) = L
| (o, V) is truncated

(1 —gOr+ Y (uZ(a)-Al) otherwise
aclql

A0 =



Decay of approximation error
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Analyze truncated root-to-leaf paths

e R R e e e R
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Withess argument (pA7 < ] bound)

: : a large {2,3 }-tree ,
with ind. bad events :

A truncated path

|

|

|

R
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F

|

|

e e e A e e _j

Bad events H

[ = = — ——— Type 1: (6,v) — (1, u) (fraction g = O(A™>)) (variable) |
' Truncated up to certain condition | Type 2: ¢ € B is frozen (fraction roughly a/p = O(A™>)) (constraint)

A

— e e e e e v_‘_‘;J

— R e e e R e e

0 NextVar(o,v) = L

i (0.v)ist oo Different
10 — 0, V) Is truhcate densities!

(1 —ghA2+ Y (ula)-A%) otherwise
aclql



Decay of approximation error

e e e A A

;_ (6. 7) Percolation-style analysis

Analyze truncated root-to-leaf paths

e R R e e e R

e e e R e

Witness argument (pA° < 1 bound)

: : a large generalized {2,3 }-tree ‘
with ind. bad events

| Atruncated path

- AT o SN e Aoy B pRa oo e i o Sl Ac (lad . N - . . . N o i . - _ - i . . . N - _ - .
'S = T X S B = N
R e R M

Bad events H
— — = =t —— —— - Type 1: (0, V) — (7, 1) (fraction g = O(A™")) (variable) |

———

Type 2: ¢ € € is frozen (fraction roughly a/p = O(A™)) (constraint)

R e e e e e e LJ:J

' Truncated up to certain condition

0 NextVar(o,v) = L

i (0.v)ist oo Different
10 — 0, V) Is truhcate densities!

(1 —ghA2+ Y (ula)-A%) otherwise
aclql



Generalized {2,3}-tree

H = (V, &): ahypergraph Lin(H): the line graph of H
distyjnzy:shortest path distance in Lin(H)

T C &isa{2,3}-tree of Lin(H) if:
- for any distinct u, v € T, dist o) (u, v) > 2;
- T'is connected if an edge is added between every u, v € T such that dist| ;g (u, v) € {2,3}.

IT'=UUE where U CV,EC &,isageneralized {2,3 }-tree of H if:
- for any distinct u, v € E, distyjhy(u, v) > 2;
- It holds for the directed graph G(T, &) that there is a vertex r € T (called a root) which can reach
all other vertices through directed paths, where the G(T, &) is constructed on the vertex set T as that,
for any u,v € T there is an arc u, v € & if and only if at least one of the following conditions is satisfied:
- u,v € E and diStLin(H)(l/t, v) € {2,3};
- u € U,v € E and there exists ¢ € & such that u € e A disty j, (v, ) = 1;
- u € E,v € U and there exists ¢ € & such that u € v A dist (1, e) € {1,2};

- u,v € U and there exists ¢ € & such that u,v € e.




Summary

,j We develop a new approach for deterministic approximate counting general CSP solutions in
i the LLL regime by derandomizing the recursive sampler in [He, W., Yin "22].

We invent a refined combinatorial structure of generalized {2,3 }-tree, leading to a
| state-of-the-art regime pA° < 1 for counting/sampling general CSP solutions.
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Future work |

A better LLL condition? (Current pA5 < ] versus lower bound pA2 > 1)

 Derandomizing more general methods for sampling LLL, such as MCMGC?
(Resolved by [Feng, Guo, W., Wang, Yin ’22])



Summary

j We develop a new approach for deterministic approximate counting general CSP solutions in
the LLL regime by derandomizing the recursive sampler in [He, W., Yin '22].

: We invent a refined combinatorial structure of generalized {2,3 }-tree, leading to a
| state-of-the-art regime pA° < 1 for counting/sampling general CSP solutions.

Thanks' Any questlons‘?

Future work

A better LLL condition? (Current pA5 < ] versus lower bound pA2 > 1)

 Derandomizing more general methods for sampling LLL, such as MCMGC?
(Resolved by [Feng, Guo, W., Wang, Yin ’22])



