Deterministic counting Lovász local lemma beyond linear programming

- Chunyang Wang Nanjing University
- Joint work with: Kun He (Chinese Academy of Science) Yitong Yin (Nanjing University)
 - SODA 2023

Given a weight function $w(\cdot)$ on state space Ω , Sampling problem: W(X)Sample $x \sim$ $\sum w(y)$ *y*∈Ω

(Almost) Uniform Sampling

self-reduction [Jerrum, Valiant, Vazirani 1986]

adaptive simulated annealing [Dyer, Frieze, Kannan 1991] [Štefankovič, Vempala, Vigoda 2009]

Randomized **Approximate Counting**

Deterministic Counting

Some approaches for deterministic counting:

- decay of correlation [Weitz '06]
- zero-freeness [Barvinok '16, Patel, Regts '17]
- cluster-expansion [Helmuth, Perkins, Regts '20, Jenssen, Keevash, Perkins '20]

• linear programming for CSPs [Moitra '19, Guo, Liao, Lu, Zhang '20, Jain, Pham, Vuong '21]

Deterministic Counting

Some approaches for deterministic counting:

- decay of correlation [Weitz '06]
- zero-freeness [Barvinok '16, Patel, Regts '17]
- cluster-expansion [Helmuth, Perkins, Regts '20, Jenssen, Keevash, Perkins '20]
- \bullet

Developed independently from sampling algorithms!

linear programming for CSPs [Moitra '19, Guo, Liao, Lu, Zhang '20, Jain, Pham, Vuong '21]

Deterministic Counting

Some approaches for deterministic counting:

- decay of correlation [Weitz '06]
- zero-freeness [Barvinok '16, Patel, Regts '17]
- cluster-expansion [Helmuth, Perkins, Regts '20, Jenssen, Keevash, Perkins '20]

Developed independently from sampling algorithms!

• linear programming for CSPs [Moitra '19, Guo, Liao, Lu, Zhang '20, Jain, Pham, Vuong '21]

Deterministic **Approximate Counting**

Constraint Satisfaction Problem

Variables: $V = \{v_1, v_2, ..., v_n\}$ with finite domains Q_v for each $v \in V$

 $v \in vbl(c)$

CSP solution: assignment $X \in \bigotimes Q_v$ s.t. all constraints are satisfied $v \in V$

 $\Phi = (V, Q, \mathscr{C})$

- **Constraints**: $\mathscr{C} = \{c_1, c_2, \dots, c_m\}$ with each $c \in \mathscr{C}$ defined on $vbl(c) \subseteq V$
 - $c: \bigotimes Q_v \rightarrow \{\text{satisfied}, \text{not satisfied}\}$

Constraint Satisfaction Problem $\Phi = (V, Q, \mathscr{C})$

Variables: $V = \{v_1, v_2, \dots, v_n\}$ with finite domains Q_v for each $v \in V$

 $v \in vbl(c)$

CSP solution: assignment $X \in \bigotimes Q_v$ s.t. all constraints are satisfied $v \in V$

Decision: Can we efficiently decide if Φ has a solution?

Search: Can we efficiently find a solution of Φ ?

solutions/(almost) uniformly sample a solution of Φ ?

- **Constraints**: $\mathscr{C} = \{c_1, c_2, \dots, c_m\}$ with each $c \in \mathscr{C}$ defined on $vbl(c) \subseteq V$
 - $c: \bigotimes Q_v \rightarrow \{\text{satisfied}, \text{not satisfied}\}$
 - Counting/Sampling: Can we efficiently (approximately) count the number of

Example: *k*-CNF $V = \{x_1, x_2, \dots, x_n\}, \mathscr{C} = (C_1, C_2, \dots, C_m), |C_i| = k$ $Q_v \in \{\text{True}, \text{False}\}\$ for each $v \in V$ Solution: an assignment such that each clause (constraint) evaluates to True

Example: hypergraph *q*-coloring *k*-uniform hypergraph $H = (V, \mathscr{E})$ color set [q] for each $v \in V$ Solution: an assignment such that no hyperedge (constraint) is monochromatic

Lovász Local Lemma $\Phi = (V, Q, \mathscr{C})$

Variable framework

- each $v \in V$ draws from Q_v uniformly and independently at random
- product distribution \mathscr{P}

Parameters

- violation probability $p = \max \Pr[\neg c]$
- $c \in \mathscr{C} \mathscr{P}$ • constraint degree $\Delta = \max |\{c' \in \mathscr{C} \mid vbl(c) \cap vbl(c') \neq \emptyset\}|$ $c \in \mathscr{C}$

Lovász Local Lemma $\Phi = (V, Q, \mathscr{C})$

Variable framework

- each $v \in V$ draws from Q_v uniformly and independently at random
- product distribution \mathscr{P}

Parameters

- violation probability $p = \max \Pr[\neg c]$ $c \in \mathscr{C} \mathscr{P}$
- constraint degree $\Delta = \max | \{c' \in \mathscr{C} \mid vbl(c) \cap vbl(c') \neq \emptyset\} |$ $c \in \mathscr{C}$

[Erdos, Lovász '75]

Algorithmic Lovász Local Lemma [Moser, Tardos '10]

A CSP solution exists and can be efficiently found!

Counting/Sampling LLL

Input: a CSP formula $\Phi = (V, Q, \mathscr{C})$ under LLL-like conditions $p\Delta^c \lesssim 1 - 1$

Output: Counting LLL: the approximate number of solutions of Φ

Sampling LLL: an (almost) uniform satisfying solution of Φ

[BGGGS19,GGW22]: **NP-hard** if $p\Delta^2 \gtrsim 1!$

Counting/Sampling LLL

Input: a CSP formula $\Phi = (V, Q, \mathscr{C})$ under LLL-like conditions $p\Delta^c \leq 1$

Output: Counting LLL: the approximate number of solutions of Φ

Sampling LLL: an (almost) uniform satisfying solution of Φ

Work	Instance	Condition	Technique	
Moitra '17	<i>k</i> -CNF	$p\Delta^{60} \lesssim 1$	marginal approximator by linear programming	
Guo, Liu, Lu, Zhang '19	hypergraph q -coloring	$p\Delta^{16} \lesssim 1$		Deterministic
Jain, Pham, Vuong '21b	general CSP	$p\Delta^7 \lesssim 1$		

[BGGGS19,GGW22]: **NP-hard** if $p\Delta^2 \gtrsim 1!$

Counting/Sampling LLL

Input: a CSP formula $\Phi = (V, Q, \mathscr{C})$ under LLL-like conditions $p\Delta^c \leq 1$

Output: Counting LLL: the approximate number of solutions of Φ

Sampling LLL: an (almost) uniform satisfying solution of Φ

Work	Instance	Condition	Technique	
Moitra '17	<i>k</i> -CNF	$p\Delta^{60} \lesssim 1$	marginal approximator by linear programming	Deterministic countrums in $n^{\text{poly}(k,\Delta,lo)}$
Guo, Liu, Lu, Zhang '19	hypergraph q -coloring	$p\Delta^{16} \lesssim 1$		
Jain, Pham, Vuong '21b	general CSP	$p\Delta^7 \lesssim 1$		
Work	Instance	Condition	Technique	
Hermon, Sly, Zhang'16	monotone k-CNF	$p\Delta^2 \lesssim 1$	Markov chain Monte Carlo (MCMC) or	(Randomized) sam runs in poly(n, k, Δ
Feng, Guo, Yin, Zhang '20	<i>k</i> -CNF	$p\Delta^{20} \lesssim 1$		
Feng, He, Yin,'21	atomic CSP	$p\Delta^{350} \lesssim 1$		
Jain, Pham, Vuong '21a He, Sun, Wu '21	atomic CSP	$p\Delta^{5.713} \lesssim 1$		
He, W. , Yin,'22	general CSP	$p\Delta^7 \lesssim 1$	recursive marginal sampler	

[BGGGS19,GGW22]: **NP-hard** if $p\Delta^2 \gtrsim 1!$

Our results derandomized algorithm for counting LLL in an improved regime

A general CSP satisfying

$$q^2 \cdot k \cdot p \cdot \Delta^5 \leq \frac{1}{256e^3}$$

general CSPs:

$$p\Delta^7 \lesssim 1 \rightarrow p\Delta^5 \lesssim 1$$

atomic CSPs (including *k*-CNF):
 $p\Delta^{5.713} \lesssim 1 \rightarrow p\Delta^5 \lesssim 1$

- lacksquare
- lacksquare

a deterministic FPTAS approximating # of satisfying solutions in time $n^{\text{poly}(k,\Delta,\log q)}$

- *q*: domain size
- k: constraint width
- *p*: violation probability
- Δ : constraint degree
- n: |V|

is a derandomization of the recent fast sampling algorithm in [He, W., Yin '22]

relies on a combinatorial marginal approximator, which is arguably simpler than previous linear programming-based ones for counting LLL

Local Uniformity

 μ : uniform distribution over solutions μ_v : marginal distribution at $v \in V$

LLL condition
$$\Longrightarrow \mu_{v} \ge \theta$$

where $\theta = (1 - o(1)) - \frac{1}{q}$

Local Uniformity

 μ : uniform distribution over solutions μ_v : marginal distribution at $v \in V$

LLL condition
$$\Longrightarrow \mu_v \ge \theta$$

where $\theta = (1 - o(1)) - \frac{1}{q}$

Local Uniformity

 μ : uniform distribution over solutions μ_v : marginal distribution at $v \in V$

LLL condition
$$\Longrightarrow \mu_v \ge \theta$$

where $\theta = (1 - o(1)) - \frac{1}{q}$

Local Uniformity

 μ : uniform distribution over solutions μ_v : marginal distribution at $v \in V$

LLL condition
$$\Longrightarrow \mu_{v} \geq \theta$$

where $\theta = (1 - o(1)) - \frac{1}{q}$

$$\mu_v = q\theta \cdot \mathcal{U} + (1 - q\theta) \cdot \mathcal{D}$$

Local Uniformity

 μ : uniform distribution over solutions μ_v : marginal distribution at $v \in V$

[Haeupler, Saha, Srinivasan '11]:

LLL condition
$$\Longrightarrow \mu_v \ge \theta$$

where $\theta = (1 - o(1)) - \frac{1}{q}$

 \mathcal{U} : uniform over [q]

"Overflow distribution"

$$\mathcal{D}_{v}(x) = \frac{\mu_{v}(x) - \theta}{1 - q\theta}$$

Factorization property

A key observation: assigning values to other variables may help factorize the formula!

When the connected component containing v is logarithmically small, we can use exhaustive enumeration to calculate μ_v^{σ} and \mathscr{D}_v^{σ}

 μ : uniform distribution over solutions μ_v^{σ} : marginal distribution at $v \in V$ conditioning on partial assignment σ $\mathcal{D}_{v}^{\sigma} \triangleq \frac{\mu_{v}^{\sigma} - q\theta}{1 - q\theta}$

 $\sigma_{u \leftarrow a}$: The extended partial assignment

after assigning *a* to *u*

 μ : uniform distribution over solutions μ_v^{σ} : marginal distribution at $v \in V$ conditioning on partial assignment σ $\mathscr{D}_{v}^{\sigma} \triangleq \frac{\mu_{v}^{\sigma} - q\theta}{1 - a\theta}$ $\sigma_{u \leftarrow a}$: The extended partial assignment after assigning *a* to *u* chain rule \rightarrow correctness!

$$\mu_v^{\sigma} = q\theta \cdot \mathcal{U} + (1 - q\theta) \cdot \mathcal{D}_v^{\sigma}$$

To approximate μ_v^{σ} : approximate \mathcal{D}_{v}^{σ} (a decay in error)

$$\mathcal{D}_{v}^{\sigma} = \sum_{a \in [q]} \left(\mu_{u}^{\sigma}(a) \cdot \mathcal{D}_{v}^{\sigma_{u \leftarrow a}} \right)$$

To approximate \mathcal{D}_{v}^{σ} :

If the formula is factorized with respect to v_{i} , (1) use exhaustive enumeration to calculate \mathscr{D}_{v}^{σ} Otherwise, choose another variable *u* and (2) recursively calculate μ_{μ}^{σ} and $\mathscr{D}_{\nu}^{\sigma_{u \leftarrow a}}$ for $\mathscr{D}_{\nu}^{\sigma}$

 μ : uniform distribution over solutions μ_v^{σ} : marginal distribution at $v \in V$ conditioning on partial assignment σ $\mathcal{D}_{v}^{\sigma} \triangleq \frac{\mu_{v}^{\sigma} - q\theta}{1 - q\theta}$ $\sigma_{u \leftarrow a}$: The extended partial assignment after assigning *a* to *u*

Caveat: "bad" assignments exist

$$\mu_v^{\sigma} = q\theta \cdot \mathcal{U} + (1 - q\theta) \cdot \mathcal{D}_v^{\sigma}$$

To approximate μ_v^{σ} : approximate \mathcal{D}_{v}^{σ} (a decay in error)

$$\mathcal{D}_{v}^{\sigma} = \sum_{a \in [q]} \left(\mu_{u}^{\sigma}(a) \cdot \mathcal{D}_{v}^{\sigma_{u \leftarrow a}} \right)$$

To approximate \mathscr{D}_{v}^{σ} :

If the formula is factorized with respect to v_{i} , (1) use exhaustive enumeration to calculate \mathscr{D}_v^{σ}

Otherwise, choose another variable *u* and (2) recursively calculate μ_{μ}^{σ} and $\mathscr{D}_{\nu}^{\sigma_{u \leftarrow a}}$ for $\mathscr{D}_{\nu}^{\sigma}$

 μ : uniform distribution over solutions μ_v^{σ} : marginal distribution at $v \in V$ conditioning on partial assignment σ $\mathcal{D}_{v}^{\sigma} \triangleq \frac{\mu_{v}^{\sigma} - q\theta}{1 - q\theta}$ $\sigma_{u \leftarrow a}$: The extended partial assignment after assigning *a* to *u*

Caveat: "bad" assignments exist

Solution: truncate properly so that exhaustive enumeration is efficient (1) (2) truncation error can be well-controlled

$$\mu_v^{\sigma} = q\theta \cdot \mathcal{U} + (1 - q\theta) \cdot \mathcal{D}_v^{\sigma}$$

To approximate μ_v^{σ} : approximate \mathcal{D}_{v}^{σ} (a decay in error)

$$\mathcal{D}_{v}^{\sigma} = \sum_{a \in [q]} \left(\mu_{u}^{\sigma}(a) \cdot \mathcal{D}_{v}^{\sigma_{u \leftarrow a}} \right)$$

To approximate \mathcal{D}_{v}^{σ} :

If the formula is factorized with respect to v, (1) use exhaustive enumeration to calculate \mathscr{D}_{v}^{σ} Otherwise, choose another variable *u* and (2) recursively calculate μ_{μ}^{σ} and $\mathscr{D}_{\nu}^{\sigma_{u \leftarrow a}}$ for $\mathscr{D}_{\nu}^{\sigma}$

 μ : uniform distribution over solutions μ_v^{σ} : marginal distribution at $v \in V$ conditioning on partial assignment σ $\mathcal{D}_{v}^{\sigma} \triangleq \frac{\mu_{v}^{\sigma} - q\theta}{1 - q\theta}$ $\sigma_{u \leftarrow a}$: The extended partial assignment after assigning *a* to *u*

Caveat: LLL condition **not self-reducible!**

$$\mu_v^{\sigma} = q\theta \cdot \mathcal{U} + (1 - q\theta) \cdot \mathcal{D}_v^{\sigma}$$

To approximate μ_v^{σ} : approximate \mathcal{D}_{v}^{σ} (a decay in error)

$$\mathcal{D}_{v}^{\sigma} = \sum_{a \in [q]} \left(\mu_{u}^{\sigma}(a) \cdot \mathcal{D}_{v}^{\sigma_{u \leftarrow a}} \right)$$

To approximate \mathscr{D}_{v}^{σ} :

If the formula is factorized with respect to v, (1) use exhaustive enumeration to calculate \mathscr{D}_{v}^{σ} Otherwise, choose another variable *u* and (2) recursively calculate μ_{μ}^{σ} and $\mathscr{D}_{v}^{\sigma_{u \leftarrow a}}$ for \mathscr{D}_{v}^{σ}

 μ : uniform distribution over solutions μ_v^{σ} : marginal distribution at $v \in V$ conditioning on partial assignment σ $\mathcal{D}_{v}^{\sigma} \triangleq \frac{\mu_{v}^{\sigma} - q\theta}{1 - q\theta}$ $\sigma_{u \leftarrow a}$: The extended partial assignment after assigning *a* to *u* **Caveat: LLL condition not self-reducible!** Solution: freezing[Beck' 91][JPV' 21b] $\Pr[\neg c \mid X] > \alpha \implies$ "freeze" c!P

Marginal Approximator

MarginalApproximator(σ , v): approximates μ_v^{σ} $\hat{\mathscr{D}}_{v}^{\sigma} \leftarrow \textit{RecursiveApproximator}(\sigma, v);$ return $q\theta \cdot \mathcal{U} + (1 - q\theta) \cdot \hat{\mathcal{D}}_{v}^{\sigma}$

RecursiveApproximator(σ , v): approximates $(\mu_v^{\sigma} - \theta)/(1 - q\theta)$ If some truncation condition is reached **No linear program involved!** return an arbitrary distribution on [q]; If $u = \text{NextVar}(\sigma, v) \neq \bot$ $\hat{\mu}_{u}^{\sigma} \leftarrow MarginalApproximator(\sigma, v), \hat{\mathcal{D}}_{v}^{\sigma_{u \leftarrow a}} \leftarrow RecursiveApproximator(\sigma, v)$ for each $a \in [q]$; return $\sum \left(\hat{\mu}_{u}^{\sigma}(a) \cdot \hat{\mathcal{D}}_{v}^{\sigma_{u \leftarrow a}} \right)$ Compute and return \mathscr{D}_{v}^{σ} using exhaustive enumeration

NextVar: subroutine for choosing the next variable to assign

(informal) boundary variable over connected component of frozen constraints containing v

local uniformity [Haeupler, Saha, Srinivasan '11]: worst-case LLL cond. $\Longrightarrow \mu_v^{\sigma} \ge \theta$ where $\theta = (1 - o(1))1/q$

The main algorithm

"guiding assignment" in [JPV' 21b] Method of conditional expectation

Find a "good" sequence of partial assignments P_0, P_1, \ldots, P_s s.t. P_0 is empty and P_i extends P_{i-1} on some unassigned variable, deterministically; Approximate $\frac{|S_{P_s}|}{|S_{P_0}|}$ as a telescopic product of marginal distributions;

Calculate $|\mathcal{S}_{P_{\alpha}}|$ using exhaustive enumeration, yielding $|\mathcal{S}_{P_{\alpha}}|$.

 \mathcal{S}_{σ} : set of satisfying solutions extending σ

The freezing threshold α and how it relates to approximation error of MarginalApproximate

Tree recursion of approximation error

"cost function" λ_v^{σ} :

$$\lambda_{v}^{\sigma} = \begin{cases} 0 & \text{NextVar}(\sigma, v) \\ 1 & (\sigma, v) \text{ is trunc} \\ (1 - q\theta)\lambda_{u}^{\tau_{0}} + \sum_{a \in [q]} \left(\mu_{u}^{\sigma}(a) \cdot \lambda_{v}^{\tau_{a}}\right) & \text{otherwise} \end{cases}$$

$$d_{\mathrm{TV}}(\mathscr{D}_{v}^{\sigma}, \hat{\mathscr{D}}_{v}^{\sigma}) \leq \lambda_{v}^{\sigma}$$
$$\hat{\mathscr{D}}_{v}^{\sigma}: \text{distribution of } \textit{RecursiveApproximator}(\sigma, v)$$

Generalized $\{2,3\}$ -tree

 $H = (V, \mathscr{E})$: a hypergraph Lin(H): the line graph of Hdist_{Lin(H)}:shortest path distance in Lin(H)

- $T \subseteq \mathscr{C}$ is a $\{2,3\}$ -tree of Lin(H) if:
- for any distinct $u, v \in T$, $dist_{Lin(H)}(u, v) \ge 2$;
- T is connected if an edge is added between every $u, v \in T$ such that $dist_{Lin(H)}(u, v) \in \{2, 3\}$.

 $T = U \cup E$, where $U \subseteq V, E \subseteq \mathscr{C}$, is a generalized $\{2,3\}$ -tree of H if:

- for any distinct $u, v \in E$, $dist_{Lin(H)}(u, v) \ge 2$;
- It holds for the directed graph $G(T, \mathscr{A})$ that there is a vertex $r \in T$ (called a root) which can reach
 - $u, v \in E$ and $dist_{Lin(H)}(u, v) \in \{2,3\};$
 - $u \in U, v \in E$ and there exists $e \in \mathscr{E}$ such that $u \in e \land dist_{Lin(H)}(v, e) = 1$;
 - $u \in E, v \in U$ and there exists $e \in \mathscr{C}$ such that $u \in v \land dist_{Lin(H)}(u, e) \in \{1, 2\}$;
 - $u, v \in U$ and there exists $e \in \mathscr{E}$ such that $u, v \in e$.

all other vertices through directed paths, where the $G(T, \mathscr{A})$ is constructed on the vertex set T as that, for any $u, v \in T$ there is an arc $u, v \in \mathcal{A}$ if and only if at least one of the following conditions is satisfied:

We develop a new approach for deterministic approximate counting general CSP solutions in the LLL regime by derandomizing the recursive sampler in [He, W., Yin '22].

We invent a refined combinatorial structure of generalized $\{2,3\}$ -tree, leading to a state-of-the-art regime $p\Delta^5 \lesssim 1$ for counting/sampling general CSP solutions.

Summary

We develop a new approach for deterministic approximate counting general CSP solutions in the LLL regime by derandomizing the recursive sampler in [He, W., Yin '22].

We invent a refined combinatorial structure of generalized $\{2,3\}$ -tree, leading to a state-of-the-art regime $p\Delta^5 \lesssim 1$ for counting/sampling general CSP solutions.

Future work

- A better LLL condition? (Current $p\Delta^5 \leq 1$ versus lower bound $p\Delta^2 \gtrsim 1$)
- Derandomizing more general methods for sampling LLL, such as MCMC? (Resolved by [Feng, Guo, W., Wang, Yin '22])

Summary

We develop a new approach for deterministic approximate counting general CSP solutions in the LLL regime by derandomizing the recursive sampler in [He, W., Yin '22].

We invent a refined combinatorial structure of generalized $\{2,3\}$ -tree, leading to a state-of-the-art regime $p\Delta^5 \lesssim 1$ for counting/sampling general CSP solutions.

Thanks! Any questions?

Future work

- A better LLL condition? (Current $p\Delta^5 \leq 1$ versus lower bound $p\Delta^2 \gtrsim 1$)
- Derandomizing more general methods for sampling LLL, such as MCMC? (Resolved by [Feng, Guo, W., Wang, Yin '22])

Summary

