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Counting and Sampling

(Almost) Uniform 
Sampling 

Randomized 
Approximate Counting

self-reduction
[Jerrum, Valiant, Vazirani 1986]

adaptive simulated annealing
[Dyer, Frieze, Kannan 1991]

[Štefankovič, Vempala, Vigoda 2009]
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Deterministic Counting
Some approaches for deterministic counting: 

• decay of correlation [Weitz ’06]

• zero-freeness [Barvinok ’16, Patel, Regts ’17]

• cluster-expansion [Helmuth, Perkins, Regts ’20, Jenssen, Keevash, Perkins ’20]

• linear programming for CSPs [Moitra ’19, Guo, Liao, Lu, Zhang ’20, Jain, Pham, Vuong ’21]
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(Almost) Uniform 
Sampling 

Deterministic 
Approximate Counting

Derandomization?



Variables:  with finite domains  for each 


Constraints:  with each  defined on 


satisfied, not satisfied }


CSP solution:  assignment  s.t. all constraints are satisfied


V = {v1, v2, …, vn} Qv v ∈ V

𝒞 = {c1, c2, …, cm} c ∈ 𝒞 𝗏𝖻𝗅(c) ⊆ V

c : ⨂
v∈𝗏𝖻𝗅(c)

Qv → {

X ∈ ⨂
v∈V

Qv

Constraint Satisfaction Problem
Φ = (V, Q, 𝒞)
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c : ⨂
v∈𝗏𝖻𝗅(c)

Qv → {

X ∈ ⨂
v∈V

Qv

Constraint Satisfaction Problem
Φ = (V, Q, 𝒞)

Decision: Can we efficiently decide if  has a solution?


Search: Can we efficiently find a solution of ?


Counting/Sampling: Can we efficiently (approximately) count the number of 
solutions/(almost) uniformly sample a solution of ?

Φ

Φ

Φ



Example: -CNF
, , 

 for each 


Solution: an assignment such that each clause (constraint) 
evaluates to 


k
V = {x1, x2, …, xn} 𝒞 = (C1, C2, …, Cm) |Ci | = k
Qv ∈ {𝖳𝗋𝗎𝖾, 𝖥𝖺𝗅𝗌𝖾} v ∈ V

𝖳𝗋𝗎𝖾

x1

x2

x5

x4

x3

x6

𝖳𝗋𝗎𝖾

𝖥𝖺𝗅𝗌𝖾

Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x5 ∨ ¬x6) ∧ (x3 ∨ ¬x4 ∨ ¬x5)

Example: hypergraph -coloring
-uniform hypergraph 


color set  for each 

Solution: an assignment such that no hyperedge 
(constraint) is monochromatic


q
k H = (V, ℰ)

[q] v ∈ V



Variable framework 
• each  draws from  uniformly and independently at random


• product distribution 


Parameters 
•  violation probability  

•  constraint degree   

 

v ∈ V Qv

𝒫

p = max
c∈𝒞

Pr
𝒫

[¬c]

Δ = max
c∈𝒞

|{c′ ∈ 𝒞 ∣ 𝗏𝖻𝗅(c) ∩ 𝗏𝖻𝗅(c′ ) ≠ Ø} |

Lovász Local Lemma
Φ = (V, Q, 𝒞)



Variable framework 
• each  draws from  uniformly and independently at random


• product distribution 


Parameters 
•  violation probability  

•  constraint degree   

 

v ∈ V Qv

𝒫

p = max
c∈𝒞

Pr
𝒫

[¬c]

Δ = max
c∈𝒞

|{c′ ∈ 𝒞 ∣ 𝗏𝖻𝗅(c) ∩ 𝗏𝖻𝗅(c′ ) ≠ Ø} |

epΔ ≤ 1
Lovász Local Lemma

[Erdos, Lovász ’75]

A CSP solution exists 
and can be efficiently found!Algorithmic Lovász Local Lemma


[Moser, Tardos ’10]

Lovász Local Lemma
Φ = (V, Q, 𝒞)
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-CNFkMoitra ’17

Work Instance Condition Technique

Deterministic counting LLL:
runs in  timen𝗉𝗈𝗅𝗒(k,Δ,log q)

Work Instance Condition Technique

Hermon, Sly, Zhang’16
Markov chain Monte Carlo


(MCMC)

or 


projected MCMC

Feng, Guo, Yin, Zhang ’20

Feng, He, Yin,’21

He, W., Yin,’22

monotone -CNFk pΔ2 ≲ 1

pΔ20 ≲ 1

pΔ350 ≲ 1

pΔ7 ≲ 1

pΔ5.713 ≲ 1

-CNFk

atomic CSP

atomic CSP

general CSP recursive marginal sampler

(Randomized) sampling LLL:
runs in  time𝗉𝗈𝗅𝗒(n, k, Δ, q)

Jain, Pham, Vuong ’21a

He, Sun, Wu ’21



Our results

A general CSP satisfying 


q2 ⋅ k ⋅ p ⋅ Δ5 ≤
1

256e3

derandomized algorithm for counting LLL in an improved regime

           : domain size 
           : constraint width  
           : violation probability 
          : constraint degree 
           :  

q
k
p
Δ
n |V |

• is a derandomization of the recent fast sampling algorithm in [He, W., Yin ’22]


• relies on a combinatorial marginal approximator, which is arguably simpler than 

previous linear programming-based ones for counting LLL

a deterministic FPTAS 

approximating # of satisfying 

solutions in time npoly(k,Δ,log q)

general CSPs: 

 


atomic CSPs (including -CNF): 

 


pΔ7 ≲ 1 → pΔ5 ≲ 1
k

pΔ5.713 ≲ 1 → pΔ5 ≲ 1



Local Uniformity

[Haeupler, Saha, Srinivasan ’11]:
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Local Uniformity

“zone of local uniformity”
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μv = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟v

: uniform over 𝒰 [q]

𝒟v(x) =
μv(x) − θ
1 − qθ

“Overflow distribution”

Local Uniformity

“zone of local uniformity”
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LLL condition  
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Factorization property
A key observation:  assigning values to other variables may help factorize the formula!

Factorized!
remove satisfied 


constraints
assigning values

to other variables

When the connected component containing  is logarithmically small,

we can use exhaustive enumeration to calculate  and 

v
μσ

v 𝒟σ
v

partial assignment 
σ



A recursive marginal approximator

To approximate : 

approximate 

μσ
v

𝒟σ
v


μσ
v = qθ ⋅ 𝒰+(1 − qθ) ⋅ 𝒟σ

v

𝒟σ
v = ∑

a∈[q]
(μσ

u(a) ⋅ 𝒟σu←a
v )

To approximate :

(1) If the formula is factorized with respect to ,


use exhaustive enumeration to calculate 

(2) Otherwise, choose another variable  and 


recursively calculate  and  for 

𝒟σ
v

v
𝒟σ

v
u

μσ
u 𝒟σu←a

v 𝒟σ
vchoose  

wisely!

: uniform distribution over solutions

: marginal distribution at 


conditioning on partial assignment 





: The extended partial assignment

after assigning  to 


μ
μσ

v v ∈ V
σ

𝒟σ
v ≜

μσ
v − qθ

1 − qθ
σu←a

a u
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: The extended partial assignment

after assigning  to 


μ
μσ

v v ∈ V
σ

𝒟σ
v ≜

μσ
v − qθ

1 − qθ
σu←a

a u

chain rule correctness!→



A recursive marginal approximator

Caveat:  
“bad” assignments exist 
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Solution:

 truncate properly so that


(1) exhaustive enumeration is efficient

(2) truncation error can be well-controlled
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LLL condition 

not self-reducible!
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: The extended partial assignment

after assigning  to 


μ
μσ

v v ∈ V
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𝒟σ
v ≜

μσ
v − qθ

1 − qθ
σu←a

a u

Solution: 

freezing[Beck’ 91][JPV’ 21b]


“freeze” ！Pr
𝒫

[¬c ∣ X] > α ⟹ c



Marginal Approximator
MarginalApproximator :  approximates 


RecursiveApproximator ;


return 

(σ, v) μσ
v

�̂�σ
v ← (σ, v)

qθ ⋅ 𝒰 + (1 − qθ) ⋅ �̂�σ
v

RecursiveApproximator :   approximates 

If some truncation condition is reached


return an arbitrary distribution on ;


If 

MarginalApproximator , RecursiveApproximator  for each ;


return 


Compute and return  using exhaustive enumeration


(σ, v) (μσ
v − θ)/(1 − qθ)

[q]

u = NextVar(σ, v) ≠ ⊥
̂μσ
u ← (σ, v) �̂�σu←a

v ← (σ, v) a ∈ [q]

∑
a∈[q]

( ̂μσ
u(a) ⋅ �̂�σu←a

v )
𝒟σ

v

local uniformity 
[Haeupler, Saha, Srinivasan ’11]:
worst-case LLL cond.  


where   
⟹ μσ

v ≥ θ
θ = (1 − o(1))1/q

: subroutine for choosing the next variable to assign 
NextVar
(informal) boundary variable over connected component of frozen constraints containing v

No linear program involved!



The main algorithm
      Main Algorithm (sketch):


Find a “good” sequence of partial assignments  s.t.  is 
empty and  extends  on some unassigned variable, deterministically;


Approximate  as a telescopic product of marginal distributions;


Calculate  using exhaustive enumeration, yielding .

P0, P1, …, Ps P0
Pi Pi−1

|𝒮Ps
|

|𝒮P0
|

|𝒮Ps
| |𝒮P0

|

1.  can be well-approximated


2.  can be efficiently enumerated

|𝒮Pi
|

|𝒮Pi−1
|

|𝒮Ps
|

remove satisfied 

constraints

Decomposed!

“guiding assignment” in [JPV’ 21b]

Method of conditional expectation : set of satisfying solutions extending 𝒮σ σ



The freezing threshold α

small α
good guarantees of 

worst-case local uniformity  
(large )qθ

large decay of error for one  
step of MarginalApproximator

small p/α constraints are easy to 
satisfy before frozen 

large fraction of distribution 
not truncated  

small enough p  MarginalApproximator well approximates 
the marginal distribution (informal)

and how it relates to approximation error of MarginalApproximator



Truncated up to certain condition

Tree recursion of approximation error
(σ, v)

(τ0, u) (τ1, v) (τq, v)⋯

𝒯τ0,u 𝒯τ1,v 𝒯τq,v

𝒯σ,v

λσ
v =

0 NextVar(σ, v) = ⊥
1 (σ, v) is truncated

(1 − qθ)λτ0u + ∑
a∈[q]

(μσ
u(a) ⋅ λτav ) otherwise

"cost function” :λσ
v

⋯

dTV(𝒟σ
v, �̂�σ

v) ≤ λσ
v

: distribution of RecursiveApproximator  �̂�σ
v (σ, v)



Decay of approximation error

Truncated up to certain condition

(σ, v)

(τ0, u) (τ1, v) (τq, v)⋯

𝒯τ0,u 𝒯τ1,v 𝒯τq,v

𝒯σ,v

⋯

λσ
v =

0 NextVar(σ, v) = ⊥
1 (σ, v) is truncated
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(μσ
u(a) ⋅ λτav ) otherwise

Witness argument (  bound)pΔ7 ≲ 1

A truncated path a large -tree [Alon’ 91] 
with ind. bad events 

{2,3}

Bad events
Type 1:  (fraction )(σ, v) → (τ0, u) qθ = O(Δ−3)
Type 2:  is frozen (fraction roughly )c ∈ 𝒞 α/p = O(Δ−3)

Percolation-style analysis

Analyze truncated root-to-leaf paths
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Analyze truncated root-to-leaf paths



Truncated up to certain condition

(σ, v)

(τ0, u) (τ1, v) (τq, v)⋯

𝒯τ0,u 𝒯τ1,v 𝒯τq,v

𝒯σ,v

⋯

Decay of approximation error

λσ
v =

0 NextVar(σ, v) = ⊥
1 (σ, v) is truncated

(1 − qθ)λτ0u + ∑
a∈[q]

(μσ
u(a) ⋅ λτav ) otherwise

Witness argument (  bound)pΔ5 ≲ 1

A truncated path a large generalized -tree 
with ind. bad events 

{2,3}

Bad events
Type 1:  (fraction )(σ, v) → (τ0, u) qθ = O(Δ−1)
Type 2:  is frozen (fraction roughly )c ∈ 𝒞 α/p = O(Δ−3)

(variable)
(constraint)

Different  
densities!

Percolation-style analysis

Analyze truncated root-to-leaf paths



Generalized -tree{2,3}

 is a -tree of  if:

• for any distinct , ; 

•  is connected if an edge is added between every  such that .


T ⊆ ℰ {2,3} 𝖫𝗂𝗇(H)
u, v ∈ T 𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H)(u, v) ≥ 2

T u, v ∈ T 𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H)(u, v) ∈ {2,3}

: a hypergraph  : the line graph of 

:shortest path distance in 

H = (V, ℰ) 𝖫𝗂𝗇(H) H
𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H) 𝖫𝗂𝗇(H)

, where , is a generalized -tree of  if:

• for any distinct , ;

• It holds for the directed graph  that there is a vertex  (called a root) which can reach 


all other vertices through directed paths, where the  is constructed on the vertex set  as that, 

for any  there is an arc  if and only if at least one of the following conditions is satisfied:


-   and ;

-   and there exists  such that  ;

-   and there exists  such that  ;

-   and there exists  such that .


T = U ∪ E U ⊆ V, E ⊆ ℰ {2,3} H
u, v ∈ E 𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H)(u, v) ≥ 2

G(T, 𝒜) r ∈ T
G(T, 𝒜) T

u, v ∈ T u, v ∈ 𝒜
u, v ∈ E 𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H)(u, v) ∈ {2,3}
u ∈ U, v ∈ E e ∈ ℰ u ∈ e ∧ 𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H)(v, e) = 1
u ∈ E, v ∈ U e ∈ ℰ u ∈ v ∧ 𝖽𝗂𝗌𝗍𝖫𝗂𝗇(H)(u, e) ∈ {1,2}
u, v ∈ U e ∈ ℰ u, v ∈ e



Summary
We develop a new approach for deterministic approximate counting general CSP solutions in 
the LLL regime by derandomizing the recursive sampler in [He, W., Yin ’22].


We invent a refined combinatorial structure of generalized -tree, leading to a

state-of-the-art regime  for counting/sampling general CSP solutions.


{2,3}
pΔ5 ≲ 1



Summary
We develop a new approach for deterministic approximate counting general CSP solutions in 
the LLL regime by derandomizing the recursive sampler in [He, W., Yin ’22].


We invent a refined combinatorial structure of generalized -tree, leading to a

state-of-the-art regime  for counting/sampling general CSP solutions.


{2,3}
pΔ5 ≲ 1

Future work
• A better LLL condition? (Current  versus lower bound )


• Derandomizing more general methods for sampling LLL, such as MCMC? 

(Resolved by [Feng, Guo, W., Wang, Yin ’22])


pΔ5 ≲ 1 pΔ2 ≳ 1



Summary
We develop a new approach for deterministic approximate counting general CSP solutions in 
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We invent a refined combinatorial structure of generalized -tree, leading to a

state-of-the-art regime  for counting/sampling general CSP solutions.


{2,3}
pΔ5 ≲ 1

Future work
• A better LLL condition? (Current  versus lower bound )


• Derandomizing more general methods for sampling LLL, such as MCMC? 

(Resolved by [Feng, Guo, W., Wang, Yin ’22])


pΔ5 ≲ 1 pΔ2 ≳ 1

Thanks! Any questions?


