Deterministic counting Lovász local lemma beyond linear programming

Chunyang Wang
Nanjing University

Joint work with: Kun He (Chinese Academy of Science) Yitong Yin (Nanjing University)

SODA 2023

Counting and Sampling

Given a weight function $w(\cdot)$ on state space Ω,
Counting problem:
Sampling problem:
compute $\sum_{x \in \Omega} w(x)$
Sample $x \sim \frac{w(x)}{\sum_{y \in \Omega} w(y)}$

Counting and Sampling

Counting and Sampling

Counting and Sampling

(Almost) Uniform
Sampling
self-reduction
[Jerrum, Valiant, Vazirani 1986]
adaptive simulated annealing
[Dyer, Frieze, Kannan 1991]
[Štefankovič, Vempala, Vigoda 2009]

Randomized Approximate Counting

Deterministic Counting

Some approaches for deterministic counting:

- decay of correlation [Weitz '06]
- zero-freeness [Barvinok '16, Patel, Regts '17]
- cluster-expansion [Helmuth, Perkins, Regts '20, Jenssen, Keevash, Perkins '20]
- linear programming for CSPs [Moitra '19, Guo, Liao, Lu, Zhang '20, Jain, Pham, Vuong '21]

Deterministic Counting

Some approaches for deterministic counting:

- decay of correlation [Weitz '06] Developed independently
- zero-freeness [Barvinok '16, Patel, Regts '17]
from sampling algorithms!
- cluster-expansion [Helmuth, Perkins, Regts '20, Jenssen, Keevash, Perkins '20]
- linear programming for CSPs [Moitra '19, Guo, Liao, Lu, Zhang '20, Jain, Pham, Vuong '21]

Deterministic Counting

Some approaches for deterministic counting:

- decay of correlation [Weitz '06] Developed independently
- zero-freeness [Barvinok '16, Patel, Regts '17]
from sampling algorithms!
- cluster-expansion [Helmuth, Perkins, Regts '20, Jenssen, Keevash, Perkins '20]
- linear programming for CSPs [Moitra '19, Guo, Liao, Lu, Zhang '20, Jain, Pham, Vuong '21]
(Almost) Uniform
Sampling

Derandomization?
Sampling

Constraint Satisfaction Problem

$$
\Phi=(V, \boldsymbol{Q}, \mathscr{C})
$$

Variables: $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with finite domains Q_{v} for each $v \in V$
Constraints: $\mathscr{C}=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ with each $c \in \mathscr{C}$ defined on $\operatorname{vbl}(c) \subseteq V$

$$
c: \bigotimes_{v \in v b l(c)} Q_{v} \rightarrow\{\text { satisfied, not satisfied }\}
$$

CSP solution: assignment $X \in \bigotimes_{v \in V} Q_{v}$ s.t. all constraints are satisfied

Constraint Satisfaction Problem
 $$
\Phi=(V, \boldsymbol{Q}, \mathscr{C})
$$

Variables: $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with finite domains Q_{v} for each $v \in V$
Constraints: $\mathscr{C}=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ with each $c \in \mathscr{C}$ defined on $\operatorname{vbl}(c) \subseteq V$

$$
c: \bigotimes_{v \in \mathrm{vbl}(\mathrm{c})} Q_{v} \rightarrow \text { \{satisfied, not satisfied \}}
$$

CSP solution: assignment $X \in \bigotimes Q_{v}$ s.t. all constraints are satisfied $v \in V$
Decision: Can we efficiently decide if Φ has a solution?
Search: Can we efficiently find a solution of Φ ?
Counting/Sampling: Can we efficiently (approximately) count the number of solutions/(almost) uniformly sample a solution of Φ ?

$$
\Phi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{5} \vee \neg x_{6}\right) \wedge\left(x_{3} \vee \neg x_{4} \vee \neg x_{5}\right)
$$

Example: k-CNF

$V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, \mathscr{C}=\left(C_{1}, C_{2}, \ldots, C_{m}\right),\left|C_{i}\right|=k$
$Q_{v} \in\{$ True, False $\}$ for each $v \in V$
Solution: an assignment such that each clause (constraint) evaluates to True

Example: hypergraph q-coloring
k-uniform hypergraph $H=(V, \mathscr{E})$
color set [q] for each $v \in V$
Solution: an assignment such that no hyperedge (constraint) is monochromatic

Lovász Local Lemma

$$
\Phi=(V, \boldsymbol{Q}, \mathscr{C})
$$

Variable framework

- each $v \in V$ draws from Q_{v} uniformly and independently at random
- product distribution \mathscr{P}

Parameters

- violation probability $p=\max _{c \in \mathscr{C}} \operatorname{Pr}[\neg c]$
- constraint degree $\Delta=\max _{c \in \mathscr{C}}\left|\left\{c^{\prime} \in \mathscr{C} \mid \operatorname{vbl}(c) \cap \operatorname{vbl}\left(c^{\prime}\right) \neq \varnothing\right\}\right|$

Lovász Local Lemma

$$
\Phi=(V, Q, \mathscr{C})
$$

Variable framework

- each $v \in V$ draws from Q_{v} uniformly and independently at random
- product distribution \mathscr{P}

Parameters

- violation probability $p=\max _{c \in \mathscr{C}} \operatorname{Pr}[\neg c]$

$$
c \in \mathscr{C} \quad \mathscr{P}
$$

- constraint degree $\Delta=\max _{c \in \mathscr{C}}\left|\left\{c^{\prime} \in \mathscr{C} \mid \operatorname{vbl}(c) \cap \operatorname{vbl}\left(c^{\prime}\right) \neq \varnothing\right\}\right|$

Lovász Local Lemma
[Erdos, Lovász '75]

Algorithmic Lovász Local Lemma
[Moser, Tardos '10]

A CSP solution exists and can be efficiently found!

Counting/Sampling LLL

Input: a CSP formula $\Phi=(V, \boldsymbol{Q}, \mathscr{C})$ under LLL-like conditions $p \Delta^{c} \lesssim 1 \longrightarrow \begin{gathered}{[B G G G S 19, G G W 22]:}\end{gathered} \quad \begin{gathered}\text { NP-hard if } p \Delta^{2} \gtrsim 1 \text { ! }\end{gathered}$
Output: Counting LLL: the approximate number of solutions of Φ
Sampling LLL: an (almost) uniform satisfying solution of Φ

Counting/Sampling LLL

Input: a CSP formula $\Phi=(V, \boldsymbol{Q}, \mathscr{C})$ under LLL-like conditions $p \Delta^{c} \lesssim 1 \longrightarrow \begin{gathered}{[B G G G S 19, G G W 22]:}\end{gathered} \quad$ NP-hard if $p \Delta^{2} \gtrsim 1$!
Output: Counting LLL: the approximate number of solutions of Φ
Sampling LLL: an (almost) uniform satisfying solution of Φ

Work	Instance	Condition	Technique
Moitra '17	k-CNF	$p \Delta^{60} \lesssim 1$	marginal approximator by linear programming
Guo, Liu, Lu, Zhang '19	Deterministic counting LLL: runs in $n^{\text {poly }(k, \Delta, \log q)}$ time		
Jain, Pham, Vuong '21b	general CSP q-coloring	$p \Delta^{16} \lesssim 1$	$p \Delta^{7} \lesssim 1$

Counting/Sampling LLL

$$
\text { Input: a CSP formula } \Phi=(V, \boldsymbol{Q}, \mathscr{C}) \text { under LLL-like conditions } p \Delta^{c} \lesssim 1 \xrightarrow{[B G G G S 19, G G W 22]:}
$$ Output: Counting LLL: the approximate number of solutions of Φ

Sampling LLL: an (almost) uniform satisfying solution of Φ

Our results

derandomized algorithm for counting LLL in an improved regime

a deterministic FPTAS
approximating \# of satisfying solutions in time $n^{\text {poly }(k, \Delta, \log q)}$
q : domain size
k : constraint width p : violation probability Δ : constraint degree $n:|V|$

$$
\begin{gathered}
\text { general CSPs: } \\
p \Delta^{7} \lesssim 1 \rightarrow p \Delta^{5} \lesssim 1 \\
\text { atomic CSPs (including } k \text {-CNF): } \\
p \Delta^{5.713} \lesssim 1 \rightarrow p \Delta^{5} \lesssim 1
\end{gathered}
$$

- is a derandomization of the recent fast sampling algorithm in [He, W., Yin '22]
- relies on a combinatorial marginal approximator, which is arguably simpler than previous linear programming-based ones for counting LLL

Local Uniformity

μ : uniform distribution over solutions
μ_{v} : marginal distribution at $v \in V$
[Haeupler, Saha, Srinivasan '11]:
LLL condition $\Longrightarrow \mu_{v} \geq \theta$
where $\theta=(1-o(1)) \frac{1}{q}$

Local Uniformity

μ : uniform distribution over solutions
μ_{v} : marginal distribution at $v \in V$
[Haeupler, Saha, Srinivasan '11]:
LLL condition $\Longrightarrow \mu_{v} \geq \theta$
where $\theta=(1-o(1)) \frac{1}{q}$

Local Uniformity

μ : uniform distribution over solutions
μ_{v} : marginal distribution at $v \in V$
[Haeupler, Saha, Srinivasan '11]:
LLL condition $\Longrightarrow \mu_{v} \geq \theta$
where $\theta=(1-o(1)) \frac{1}{q}$
x

μ : uniform distribution over solutions
μ_{v} : marginal distribution at $v \in V$
[Haeupler, Saha, Srinivasan '11]:
LLL condition $\Longrightarrow \mu_{v} \geq \theta$
where $\theta=(1-o(1)) \frac{1}{q}$

Local Uniformity

μ : uniform distribution over solutions
μ_{ν} : marginal distribution at $v \in V$
[Haeupler, Saha, Srinivasan '11]:
LLL condition $\Longrightarrow \mu_{v} \geq \theta$ where $\theta=(1-o(1)) \frac{1}{q}$
\mathscr{U} : uniform over $[q]$

Factorization property

A key observation: assigning values to other variables may help factorize the formula!

When the connected component containing v is logarithmically small, we can use exhaustive enumeration to calculate μ_{v}^{σ} and \mathscr{D}_{v}^{σ}

A recursive marginal approximator

$$
\mu_{v}^{\sigma}=q \theta \cdot \mathscr{U}+(1-q \theta) \cdot \mathscr{D}_{v}^{\sigma}
$$

To approximate μ_{ν}^{σ} : approximate \mathscr{D}_{v}^{σ}

$$
\mathscr{D}_{v}^{\sigma}=\sum_{a \in[q]}\left(\mu_{u}^{\sigma}(a) \cdot \mathscr{D}_{v}^{\sigma_{u-a}}\right)
$$

To approximate \mathscr{D}_{v}^{σ} :
(1) If the formula is factorized with respect to v, use exhaustive enumeration to calculate \mathscr{D}_{v}^{σ}
(2) Otherwise, choose another variable u and recursively calculate μ_{u}^{σ} and $\mathscr{D}_{v}^{\sigma_{u+a}}$ for \mathscr{D}_{v}^{σ}

A recursive marginal approximator

$$
\mu_{v}^{\sigma}=q \theta \cdot \mathscr{U}+(1-q \theta) \cdot \mathscr{D}_{v}^{\sigma}
$$

To approximate μ_{ν}^{σ} : approximate \mathscr{D}_{v}^{σ}

$$
\mathscr{D}_{v}^{\sigma}=\sum_{a \in[q]}\left(\mu_{u}^{\sigma}(a) \cdot \mathscr{D}_{v}^{\sigma_{u-a}}\right)
$$

To approximate \mathscr{D}_{v}^{σ} :
(1) If the formula is factorized with respect to v, use exhaustive enumeration to calculate \mathscr{D}_{v}^{σ}
μ : uniform distribution over solutions μ_{v}^{σ} : marginal distribution at $v \in V$
conditioning on partial assignment σ

$$
\mathscr{D}_{v}^{\sigma} \triangleq \frac{\mu_{v}^{\sigma}-q \theta}{1-q \theta}
$$

$\sigma_{u \leftarrow a}$: The extended partial assignment after assigning a to u
chain rule \rightarrow correctness!
(2) Otherwise, choose another variable u and recursively calculate μ_{u}^{σ} and $\mathscr{D}_{v}^{\sigma_{u-a}}$ for \mathscr{D}_{v}^{σ}

A recursive marginal approximator

$$
\mu_{v}^{\sigma}=q \theta \cdot \mathscr{U}+(1-q \theta) \cdot \mathscr{D}_{v}^{\sigma}
$$

To approximate μ_{ν}^{σ} :
approximate $\mathscr{D}_{\nu}^{\sigma}$ (a decay in error)

$$
\mathscr{D}_{v}^{\sigma}=\sum_{a \in[q]}\left(\mu_{u}^{\sigma}(a) \cdot \mathscr{D}_{v}^{\sigma_{u \leftarrow a}}\right)
$$

To approximate \mathscr{D}_{v}^{σ} :
(1) If the formula is factorized with respect to v, use exhaustive enumeration to calculate \mathscr{D}_{v}^{σ}
(2) Otherwise, choose another variable u and recursively calculate μ_{u}^{σ} and $\mathscr{D}_{v}^{\sigma_{u-a}}$ for \mathscr{D}_{v}^{σ}

A recursive marginal approximator

$$
\mu_{v}^{\sigma}=q \theta \cdot \mathscr{U}+(1-q \theta) \cdot \mathscr{D}_{v}^{\sigma}
$$

To approximate μ_{ν}^{σ} :
approximate \mathscr{D}_{v}^{σ} (a decay in error)
μ : uniform distribution over solutions $\mu_{v}^{\sigma}:$ marginal distribution at $v \in V$
conditioning on partial assignment σ

$$
\mathscr{D}_{v}^{\sigma} \triangleq \frac{\mu_{v}^{\sigma}-q \theta}{1-q \theta}
$$

$\sigma_{u \leftarrow a}$: The extended partial assignment after assigning a to u

Caveat:
 "bad" assignments exist

Solution:
truncate properly so that
(1) exhaustive enumeration is efficient
(2) truncation error can be well-controlled

A recursive marginal approximator

$$
\mu_{v}^{\sigma}=q \theta \cdot \mathscr{U}+(1-q \theta) \cdot \mathscr{D}_{v}^{\sigma}
$$

To approximate μ_{ν}^{σ} :
approximate $\mathscr{D}_{\nu}^{\sigma}$ (a decay in error)

$$
\mathscr{D}_{v}^{\sigma}=\sum_{a \in[q]}\left(\mu_{u}^{\sigma}(a) \cdot \mathscr{D}_{v}^{\sigma_{u \leftarrow a}}\right)
$$

To approximate \mathscr{D}_{v}^{σ} :
(1) If the formula is factorized with respect to v, use exhaustive enumeration to calculate \mathscr{D}_{v}^{σ}
(2) Otherwise, choose another variable u and recursively calculate μ_{u}^{σ} and $\mathscr{D}_{v}^{\sigma_{u-a}}$ for \mathscr{D}_{v}^{σ}

A recursive marginal approximator

$$
\mu_{v}^{\sigma}=q \theta \cdot \mathscr{U}+(1-q \theta) \cdot \mathscr{D}_{v}^{\sigma}
$$

To approximate μ_{ν}^{σ} :
approximate $\mathscr{D}_{\nu}^{\sigma}$ (a decay in error)

$$
\mathscr{D}_{v}^{\sigma}=\sum_{a \in[q]}\left(\mu_{u}^{\sigma}(a) \cdot \mathscr{D}_{v}^{\sigma_{u-a}}\right)
$$

To approximate \mathscr{D}_{v}^{σ} :
(1) If the formula is factorized with respect to v, use exhaustive enumeration to calculate \mathscr{D}_{v}^{σ}
(2) Otherwise, choose another variable u and recursively calculate μ_{u}^{σ} and $\mathscr{D}_{v}^{\sigma_{u-a}}$ for \mathscr{D}_{v}^{σ}

Marginal Approximator

MarginalApproximator (σ, v) : approximates μ_{v}^{σ}

local uniformity

[Haeupler, Saha, Srinivasan '11]:
$\hat{\mathscr{D}}_{v}^{\sigma} \leftarrow$ RecursiveApproximator (σ, v);
worst-case LLL cond. $\Longrightarrow \mu_{v}^{\sigma} \geq \theta$
where $\theta=(1-o(1)) 1 / q$

RecursiveApproximator (σ, v) : approximates $\left(\mu_{v}^{\sigma}-\theta\right) /(1-q \theta)$
If some truncation condition is reached
return an arbitrary distribution on [q]; No linear program involved!
If $u=\operatorname{Next} \operatorname{Var}(\sigma, v) \neq \perp$
$\hat{\mu}_{u}^{\sigma} \leftarrow \operatorname{MarginalApproximator}(\sigma, v), \hat{\mathscr{D}}_{v}^{\sigma_{u \leftarrow a}} \leftarrow \operatorname{RecursiveApproximator}(\sigma, v)$ for each $a \in[q]$;
return $\sum_{a \in[q]}\left(\hat{\mu}_{u}^{\sigma}(a) \cdot \hat{\mathscr{D}}_{v}^{\sigma_{u-a}}\right)$
Compute and return \mathscr{D}_{v}^{σ} using exhaustive enumeration

NextVar: subroutine for choosing the next variable to assign
(informal) boundary variable over connected component of frozen constraints containing v

The main algorithm

1. $\frac{\left|\mathcal{S}_{P_{i}}\right|}{\left|\mathcal{S}_{P_{i-1}}\right|}$ can be well-approximated 2. $\left|\mathcal{S}_{P_{s}}\right|$ can be efficiently enumerated

Main Algorithm (sketch):

Find a "good" sequence of partial assignments $P_{0}, P_{1}, \ldots, P_{s}$ s.t. P_{0} is empty and P_{i} extends P_{i-1} on some unassigned variable, deterministically; Approximate $\frac{\left|\mathcal{S}_{P_{s}}\right|}{\left|\mathcal{S}_{P_{0}}\right|}$ as a telescopic product of marginal distributions;
Calculate $\left|\mathcal{S}_{P_{s}}\right|$ using exhaustive enumeration, yielding $\left|\mathcal{S}_{P_{0}}\right|$.
"guiding assignment" in [JPV' 21b] Method of conditional expectation
\mathcal{S}_{σ} : set of satisfying solutions extending σ

The freezing threshold α

and how it relates to approximation error of MarginalApproximator

Tree recursion of approximation error

Truncated up to certain condition |

Decay of approximation error

Decay of approximation error

Decay of approximation error

Generalized \{2,3\}-tree

$H=(V, \mathscr{E})$: a hypergraph $\operatorname{Lin}(H)$: the line graph of H dist $_{\text {Lin }(H)}$:shortest path distance in Lin (H)

$T \subseteq \mathscr{E}$ is a $\{2,3\}$-tree of $\operatorname{Lin}(H)$ if:

- for any distinct $u, v \in T$, $\operatorname{dist}_{\operatorname{Lin}(H)}(u, v) \geq 2$;
- T is connected if an edge is added between every $u, v \in T$ such that $\operatorname{dist}_{\operatorname{Lin}(H)}(u, v) \in\{2,3\}$.
$T=U \cup E$, where $U \subseteq V, E \subseteq \mathscr{E}$, is a generalized $\{2,3\}$-tree of H if:
- for any distinct $u, v \in E$, $\operatorname{dist}_{\operatorname{Lin}(H)}(u, v) \geq 2$;
- It holds for the directed graph $G(T, \mathscr{A})$ that there is a vertex $r \in T$ (called a root) which can reach all other vertices through directed paths, where the $G(T, \mathscr{A})$ is constructed on the vertex set T as that, for any $u, v \in T$ there is an arc $u, v \in \mathscr{A}$ if and only if at least one of the following conditions is satisfied:
- $u, v \in E$ and $\operatorname{dist}_{\operatorname{Lin}(H)}(u, v) \in\{2,3\}$;
- $u \in U, v \in E$ and there exists $e \in \mathscr{E}$ such that $u \in e \wedge \operatorname{dist}_{\operatorname{Lin}(H)}(v, e)=1$;
- $u \in E, v \in U$ and there exists $e \in \mathscr{E}$ such that $u \in v \wedge \operatorname{dist}_{\operatorname{Lin}(H)}(u, e) \in\{1,2\}$;
- $u, v \in U$ and there exists $e \in \mathscr{E}$ such that $u, v \in e$.

Summary

We develop a new approach for deterministic approximate counting general CSP solutions in the LLL regime by derandomizing the recursive sampler in [He, W., Yin '22].

We invent a refined combinatorial structure of generalized $\{2,3\}$-tree, leading to a state-of-the-art regime $p \Delta^{5} \lesssim 1$ for counting/sampling general CSP solutions.

Summary

We develop a new approach for deterministic approximate counting general CSP solutions in the LLL regime by derandomizing the recursive sampler in [He, W., Yin '22].

We invent a refined combinatorial structure of generalized $\{2,3\}$-tree, leading to a state-of-the-art regime $p \Delta^{5} \lesssim 1$ for counting/sampling general CSP solutions.

Future work

- A better LLL condition? (Current $p \Delta^{5} \lesssim 1$ versus lower bound $p \Delta^{2} \gtrsim 1$)
- Derandomizing more general methods for sampling LLL, such as MCMC? (Resolved by [Feng, Guo, W., Wang, Yin '22])

Summary

We develop a new approach for deterministic approximate counting general CSP solutions in the LLL regime by derandomizing the recursive sampler in [He, W., Yin '22].

We invent a refined combinatorial structure of generalized $\{2,3\}$-tree, leading to a state-of-the-art regime $p \Delta^{5} \lesssim 1$ for counting/sampling general CSP solutions.

Thanks! Any questions?

Future work

- A better LLL condition? (Current $p \Delta^{5} \lesssim 1$ versus lower bound $p \Delta^{2} \gtrsim 1$)
- Derandomizing more general methods for sampling LLL, such as MCMC? (Resolved by [Feng, Guo, W., Wang, Yin '22])

